
 | w w w . s o f t w a r e t e s t p r o . c o m6 V o l u m e 9 | I s s u e 1 | D e c e m b e r 2 0 1 1 / j a n u a r y 2 0 1 2

PerformAnCe | requIrementS

 ieee Software Engineering Book of
Knowledge defines four stages
or requirements1:

1. Elicitation: Identifying sources and
collecting requirements.

2. Analysis: Classifying, elaborating,
and negotiating requirements.

3. Specification: Producing a document.
While documenting requirements is
important, the way to do this depends on
software development methodology used,
corporate standards, and
other factors.

4. Validation: Making sure that
requirements are correct.

Let’s consider each stage and its connection
with other software life cycle processes.

Elicitation
If we look at the performance requirements
from another point of view, we can
classify them into business, usability, and
technological requirements.

Business requirements come directly from
the business and may be captured very early
in the project lifecycle, before design starts.
For example, a customer representative
should enter 20 requests per hour and
the system should support up to 1000
customer representatives. Translated into
more technical terms, the requests should
be processed in five minutes on average,
throughput would be up to 20,000 requests
per hour, and there could be up to 1,000
parallel user sessions.

The main trap here is to immediately link
business requirements to a specific design,
technology, or usability requirements, thus
limiting the number of available design
choices. If we consider a web system, for
example, it is probably possible to squeeze
all the information into a single page or
have a sequence of two dozen screens. All
information can be saved at once in the
end or each page of these two-dozen can be
saved separately. We have the same business
requirements, but response times per page
and the number of pages per hour would
be different.

————————————
by AlexPODELKO

Performance
requirements:

An Attempt at a Systematic View

Part II

In the may/june 2011 issue of sT&Qa magazine, in the first part of the article, we
discussed the most important performance metrics. now we will discuss all stages of the
performance requirements process, which include elicitation, analysis, specification, and
validation, according to the Ieee software engineering Book of Knowledge (sWeBoK).

V o l u m e 9 | I s s u e 1 | D e c e m b e r 2 0 1 1 / j a n u a r y 2 0 1 2 7

While the final requirements should
be quantitative and measurable, it
is not an absolute requirement for
initial requirements. Scott Barber, for
example, advocates that we need to
gather qualitative requirements first2.
While business people know what the
system should do and may provide
some numeric information, they are
usually not trained in requirement
elicitation and system design. If
asked to provide quantitative and
measurable requirements, they
may finally provide them based
on whatever assumptions they
have about the system’s design
and human-computer interaction,
but quite often it results in wrong
assumptions being documented as
business requirements. We need to
document real business requirements
in the form they are available,
and only then elaborate them into
quantitative and measurable efforts.

One often missed issue, as Scott
Barber notes, is goals versus

requirements2. Most of response time
“requirements” (and sometimes other
kinds of performance requirements,)
are goals, not requirements. They are
something that we want to achieve,
but missing them won’t necessarily
prevent deploying the system.

In many cases, especially for
response times, there is a big
difference between goals and
requirements (the point when
stakeholders agree that the system
can’t go into production with such
performance). For many interactive
web applications, response time
goals are two to five seconds and
requirements may be somewhere
between eight seconds and a minute.

One approach may be to define
both goals and requirements. The
problem is that, except when coming
from legal or contractual obligation,
requirements are very difficult to
get. Even if stakeholders define
performance requirements, quite

often, when it comes to the go/no go
decision, it becomes clear that it was
not the real requirements, but rather
second-tier goals.

In addition, multiple performance
metrics only together provide the full
picture. For example, you may have
a 10-second requirement and you get
15-second response time under the
full load. But what if you know that
this full load is the high load on the
busiest day of year, that response
times for the maximal load for other
days are below 10 seconds, and you
see that it is CPU-constrained and
may be fixed by a hardware upgrade?
Real response time requirements
are so environment and business
dependent that for many applications
it may be problematic to force people
to make hard decisions in advance
for each possible combination of
circumstances. One approach may be
to specify goals (making sure that they
make sense) and only then, if they are
not met, make the decision what to do
with all the information available.

Determining what specific
performance requirements are is
another large topic that is difficult
to formalize. Consider the approach
suggested by Peter Sevcik for finding
T, the threshold between satisfied
and tolerating users. T is the main
parameter of the Apdex (Application
Performance Index) methodology,
providing a single metric of user
satisfaction with the performance of
enterprise applications. Peter Sevcik
defined ten different methods 3

1. Default value (the Apdex
methodology suggest 4 sec)

2. Empirical data

3. User behavior model (number
of elements viewed / task
repetitiveness)

4. Outside references

5. Observing the user

6. Controlled performance
experiment

7. Best time multiple

8. Find frustration threshold
F first and calculate T from
F (the Apdex methodology
assumes that F = 4T)

9. Interview stakeholders

10. Mathematical inflection point

 | w w w . s o f t w a r e t e s t p r o . c o m8 V o l u m e 9 | I s s u e 1 | D e c e m b e r 2 0 1 1 / j a n u a r y 2 0 1 2

PerformAnCe | requIrementS

Each method is discussed in detail in Using Apdex to
Manage Performance.

The idea is the use of several of these methods for the
same system. If all come to approximately the same
number, they give us T. While this approach was
developed for production monitoring, there is definitely a
strong correlation between T and the response time goal
(having all users satisfied sounds like a pretty good goal),
and between F and the response time requirement. So
the approach probably can be used for getting response
time requirements with minimal modifications. While
some specific assumptions like four seconds for default
or the F=4T relationship may be up for argument, the
approach itself conveys the important
message that there are many ways
to determine a specific performance
requirement and it would be better to
get it from several sources for validation
purposes. Depending on your system,
you can determine which methods from
the above list (or maybe some others)
are applicable, calculate the metrics and
determine your requirements.

Usability requirements, mainly related
to response times, are based on the
basic principles of human-computer
interaction. Many researchers agree
that users lose focus if response times
are more than 8 to 10 seconds and
that response times should be 2 to 5
seconds for maximum productivity. These
usability considerations may influence
design choices (such as using several web pages instead
of one). In some cases, usability requirements are linked
closely to business requirements; for example, make sure
that your system’s response times are not worse than
response times of similar or competitor systems.

As long ago as 1968, Robert Miller’s paper Response Time
in Man-Computer Conversational Transactions described
three threshold levels of human attention4. Jakob Nielsen
believes that Miller’s guidelines are fundamental for
human-computer interaction, so they are still valid and
not likely to change with whatever technology comes
next5. These three thresholds are:

1. Users view response time as instantaneous
(0.1-0.2 second)

2. Users feel they are interacting freely with the
information (1-5 seconds)

3. Users are focused on the dialog (5-10 seconds)

Users view response time as instantaneous (0.1-0.2 second):
Users feel that they directly manipulate objects in the user
interface. For example, the time from the moment the user
selects a column in a table until that column highlights or
the time between typing a symbol and its appearance on the
screen. Robert Miller reported that threshold as 0.1 seconds.
According to Peter Bickford 0.2 second forms the mental
boundary between events that seem to happen together
and those that appear as echoes of each other6.

Although it is a quite important threshold, it is often
beyond the reach of application developers. That kind
of interaction is provided by operating system, browser,
or interface libraries, and usually happens on the client
side, without interaction with servers (except for dumb
terminals, that is rather an exception for business
systems today).

Users feel they are interacting freely with the information
(1-5 seconds): They notice the delay, but feel the computer
is “working” on the command. The user’s flow of thought
stays uninterrupted. Robert Miller reported this threshold
as one-two seconds4.

Peter Sevcik identified two key factors
impacting this threshold7: the number of
elements viewed and the repetitiveness
of the task. The number of elements
viewed is, for example, the number of
items, fields, or paragraphs the user
looks at. The amount of time the user is
willing to wait appears to be a function of
the perceived complexity of the request.
Impacting thresholds are the complexity
of the user interface and the number of
elements on the screen. Back in 1960s
through 1980s the terminal interface
was rather simple and a typical task was
data entry, often one element at a time.
Earlier researchers reported that one to
two seconds was the threshold to keep
maximal productivity. Modern complex
user interfaces with many elements may
have higher response times without

adversely impacting user productivity. Users also interact
with applications at a certain pace depending on how
repetitive each task is. Some are highly repetitive; others
require the user to think and make choices before
proceeding to the next screen. The more repetitive the
task is the better the expected response time.

That is the threshold that gives us response time usability
goals for most user-interactive applications. Response
times above this threshold degrade productivity. Exact
numbers depend on many difficult-to-formalize factors,
such as the number and types of elements viewed or
repetitiveness of the task, but a goal of two to five seconds
is reasonable for most typical business applications.

There are researchers who suggest that response time
expectations increase with time. Forrester research of
2009 suggests two second response time; in 2006 similar
research suggested four seconds (both research efforts
were sponsored by Akamai, a provider of web accelerating
solutions).8 While the trend probably exists, the approach
of this research was often questioned because they just
asked users. It is known that user perception of time may
be misleading. Also, as mentioned earlier, response time
expectations depends on the number of elements viewed,
the repetitiveness of the task, user assumptions of what
the system is doing, and UI showing the status. Stating
standard without specification of what page we are talking
about may be overgeneralization.

 Usability
requirements,

mainly related to
response times,

are based on the
basic principles of

human-computer

interaction.

AlexPODELKO

V o l u m e 9 | I s s u e 1 | D e c e m b e r 2 0 1 1 / j a n u a r y 2 0 1 2 9

PerformAnCe | requIrementS

Users are focused on the dialog
(5-10 seconds). They keep their
attention on the task. Robert Miller
reported threshold as 10 seconds4.
Users will probably need to reorient
themselves when they return to
the task after a delay above this
threshold, so productivity suffers.

Peter Bickford investigated user
reactions when, after 27 almost
instantaneous responses, there
was a two-minute wait loop for the
28th time for the same operation. It
took only 8.5 seconds for half the
subjects to either walk out or hit the
reboot6. Switching to a watch cursor
during the wait delayed the subject’s
departure for about 20 seconds. An
animated watch cursor was good for
more than a minute, and a progress
bar kept users waiting until the
end. Bickford’s results were widely
used for setting response times
requirements for web applications.

That is the threshold that gives us
response time usability requirements
for most user-interactive applications.
Response times above this threshold
cause users to lose focus and lead
to frustration. Exact numbers vary
significantly depending on the interface
used, but it looks like response times
should not be more than eight to
10 seconds in most cases. Still, the
threshold shouldn’t be applied blindly;
in many cases, significantly higher
response times may be acceptable
when appropriate user interface is
implemented to alleviate the problem.

Analysis and Specification
The third category, technological
requirements, comes from chosen
design and used technology. Some
technological requirements may be
known from the beginning if some
design elements are given, but
others are derived from business and
usability requirements throughout
the design process and depend on
the chosen design.

For example, if we need to call ten
web services sequentially to show
the web page with a three-second
response time, the sum of response
times of each web service, the time
to create the web page, transfer it
through the network and render

it in a browser should be below 3
second. That may be translated
into response time requirements of
200-250 milliseconds for each web
service. The more we know, the more
accurately we can apportion overall
response time to web services.

Another example of technological
requirements is resource
consumption requirements.
For example, CPU and memory
utilization should be below 70% for
the chosen hardware configuration.

Business requirements should
be elaborated during design and
development, and merge together
with usability and technological
requirements into the final
performance requirements, which
can be verified during testing and
monitored in production. The main
reason why we separate these
categories is to understand where
the requirement comes from. Is it a
fundamental business requirement so
that if the system fails we will miss
it or is it a result of a design decision
that may be changed if necessary.

Requirement engineering/architect’s
vocabulary is very different from
what is used in performance testing
or capacity planning. Performance
and scalability are often referred as
examples of quality attributes
(QA), a part of nonfunctional
requirements (NFR).

In addition to specifying
requirements in plain text, there
are multiple approaches to formalize
documenting of requirements.
For example, Quality Attribute
Scenarios by The Carnegie Mellon
Software Engineering Institute
(SEI) or Planguage (Planning
Language) introduced by Tom Gilb.

QA scenario defines source,
stimulus, environment, artifact,
response, and response measure9.
For example, the scenario may be
that users initiate 1,000 transactions
per minute stochastically under
normal operations, and these
transactions are processed with an
average latency of two seconds.

For this example:

• Source is a collection of users

• Stimulus is the stochastic
initiation of 1,000 transactions
per minute

• Artifact is always the system’s
services

• Environment is the system state,
normal mode in our example

• Response is processing the
transactions

• Response measure is the time
it takes to process the arriving
events (an average latency of two
seconds in our example)

Planguage (Planning language)
was suggested by Tom Gilb and
may work better for quantifying
quality requirements10. Planguage
keywords include:

• Tag: a unique identifier

• Gist: a short description

• Stakeholder: a party materially
affected by the requirement

• Scale: the scale of measure
used to quantify the statement

• Meter: the process or device used
to establish location on a Scale

• Must: the minimum level
required to avoid failure

• Plan: the level at which good
success can be claimed

• Stretch: a stretch goal if
everything goes perfectly

• Wish: a desirable level of
achievement that may not be
attainable through available means

• Past: an expression of previous
results for comparison

• Trend: an historical range
or extrapolation of data

• Record: the best-known
achievement

After almost
instantaneous responses,

there was a two-minute wait loop for the

for the same operation.
28th

time

27

 | w w w . s o f t w a r e t e s t p r o . c o m10 V o l u m e 9 | I s s u e 1 | D e c e m b e r 2 0 1 1 / j a n u a r y 2 0 1 2

PerformAnCe | requIrementS

It is very interesting that Planguage defines four levels
for each requirement: minimum, plan, stretch, and wish.

Another question is how to specify response time
requirements or goals. Individual transaction response times
vary, so aggregate values should be used. For example, such
metrics as average, maximum, different kinds of percentiles,
or median. The problem is that whatever aggregate value
you use, you lose some information.

Percentiles are more typical in SLAs (Service Level
Agreements). For example, 99.5 percent of all transactions
should have a response time less than five seconds. While
that may be sufficient for most systems, it doesn’t answer
all questions. What happens with the remaining 0.5
percent? Do these 0.5 percent of transactions finish in six
to seven seconds or do all of them timeout? You may need
to specify a combination of requirements. For example,
80 percent below four seconds, 99.5 percent below six
seconds, and 99.9 percent below 15 seconds (especially if
we know that the difference in performance is defined by
distribution of underlying data). Other examples may be
average four seconds and maximal 12 seconds, or average
four seconds and 99 percent below 10 seconds.

Moreover, there are different viewpoints for performance
data that need to be provided for different audiences.
You need different metrics for management, engineering,
operations, and quality assurance. For operations
and management percentiles may work best. If you do
performance tuning and want to compare two different
runs, average may be a better metric to see the trend. For
design and development you may need to provide more
detailed metrics; for example, if the order processing time
depends on the number of items in the order, it may be
separate response time metrics for one to two, three to 10,
10 to 50, and more than 50 items.

Often different tools are used to provide performance
information to different audiences; they present
information in a different way and may measure different
metrics. For example, load testing tools and active
monitoring tools provide metrics for the used synthetic
workload that may differ significantly from the actual
production load. This becomes a real issue if you want to
implement some kind of process, such as ITIL Continual
Service Improvement or Six Sigma, to keep performance
under control throughout the whole system lifecycle.

Things get more complicated when there are many
different types of transactions, but a combination of
percentile-based performance and availability metrics
usually works in production for most interactive systems.
While more sophisticated metrics may be necessary for
some systems, in most cases they make the process
overcomplicated and results difficult to analyze.

There are efforts to make an objective user satisfaction
metric. For example, Apdex (application performance
index) is a single metric of user satisfaction with the
performance of enterprise applications. The Apdex metric
is a number between zero and one, where zero means that
no users were satisfied, and one means all users were
satisfied. The approach introduces three groups of users:
satisfied, tolerating, and frustrated. Two major parameters
are introduced: threshold response times between

satisfied and tolerating users T, and between tolerating
and frustrated users F. There probably is a relationship
between T and the response time goal, and between F and
the response time requirement. However, while Apdex
may be a good metric for management and operations, it
is probably too high-level for engineering.

Validation and Verification
Requirements validation is making sure that requirements
are valid (although the term ‘validation’ is quite often
used to mean checking against test results instead
of verification). A good way to validate a requirement
is to get it from different independent sources; If all
numbers are about the same, it is a good indication
that the requirement is probably valid. Validation may
include, for example, reviews, modeling, and prototyping.
Requirements process is iterative by nature and
requirements may change with time, so to be able to
validate them is important to trace requirements back
to their source.

Requirements verification is checking if the system
performs according to the requirements. To make
meaningful comparison, both the requirements and
results should use the same metrics. One consideration
here is that load testing tools and many monitoring tools
measure only server and network time. While end user
response times, which business is interested in and
usually assumed in performance requirements, may differ
significantly, especially for rich web clients or thick clients
due to client-side processing and browser rendering.
Verification should be done using load testing results as
well as during ongoing production monitoring. Checking
production monitoring results against requirements and
load testing results is also a way to validate that load
testing was done properly.

Requirement verification presents another subtle issue
which is how to differentiate performance issues from
functional bugs exposed under load. Often, additional
investigation is required before you can determine the
cause of your observed results. Small anomalies from
expected behavior are often signs of bigger problems, and
you should at least figure out why you get them.

When 99 percent of your response times are three to
five seconds (with the requirement of five seconds) and 1
percent of your response times are five to eight seconds
it usually is not a problem. But it probably should be
investigated if this 1 percent fail or have strangely high
response times (for example, more than 30 sec) in an
unrestricted, isolated test environment. This is not due to
some kind of artificial requirement, but is an indication of
an anomaly in system behavior or test configuration. This
situation often is analyzed from a requirements point of
view, but it shouldn’t be, at least until the reasons for that
behavior become clear.

These two situations look similar, but are completely
different in nature:

1. The system is missing a requirement, but results are
consistent. This is a business decision, such as a
cost vs. response time trade off.

V o l u m e 9 | I s s u e 1 | D e c e m b e r 2 0 1 1 / j a n u a r y 2 0 1 2 11

PerformAnCe | requIrementS

2. Results are not consistent
(while requirements can even
be met). That may indicate a
problem, but its scale isn’t
clear until investigated.

Unfortunately, this view is rarely
shared by development teams too
eager to finish the project, move it
into production, and move on to the
next project. Most developers are
not very excited by the prospect of
debugging code for small memory
leaks or hunting for a rare error
that is difficult to reproduce. So the
development team becomes very
creative in finding “explanations”.
For example, growing memory and
periodic long-running transactions in
Java are often explained as a garbage
collection issue. That is false in most
cases. Even in the few cases, when
it is true, it makes sense to tune
garbage collection and prove that the
problem went away.

Another typical situation is getting
some transactions failed during
performance testing. It may still
satisfy performance requirements,
which, for example, state that 99%
of transactions should be below X
seconds – and the share of failed
transaction is less than 1 percent.
While this requirement definitely
makes sense in production where
we may have network and hardware
failures, it is not clear why we
get failed transactions during the
performance test if it was run in
a controlled environment and no
system failures were observed. It
may be a bug exposed under load
or a functional problem for some
combination of data.

When some transactions fail under
load or have very long response times
in the controlled environment and
we don’t know why, we have one
or more problems. When we have
unknown problems, why not track
it down and fix in the controlled
environment? It would be much more
difficult in production. What if these
few failed transactions are a view
page for your largest customer and
you won’t be able to create any order
for this customer until the problem is
fixed? In functional testing, as soon
as you find a problem, you usually
can figure out how serious it is.
This is not the case for performance
testing: usually you have no idea

what caused the observed symptoms
and how serious it is, and quite often
the original explanations turn out to
be wrong.

Michael Bolton described this
situation concisely11:

As Richard Feynman said in his
appendix to the Rogers Commission
Report on the Challenger space
shuttle accident, when something is
not what the design expected, it’s a
warning that something is wrong.
“The equipment is not operating as
expected, and therefore there is a
danger that it can operate with even
wider deviations in this unexpected
and not thoroughly understood
way. The fact that this danger did
not lead to a catastrophe before
is no guarantee that it will not the
next time, unless it is completely
understood.” When a system is in
an unpredicted state, it’s also in an
unpredictable state.

To summarize, we need to specify
performance requirements at the
beginning of any project for design
and development (and, of course,
reuse them during performance
testing and production monitoring).
While performance requirements
are often not perfect, forcing
stakeholders just to think about
performance increases the chances
of project success.

What exactly should be specified
– goal vs. requirements (or both),
average vs. percentile vs. APDEX,
etc. – depends on the system and
environment. Whatever it is, it
should be something quantitative
and measurable in the end. Making
requirements too complicated may
hurt. We need to find meaningful
goals / requirements, not invent
something just to satisfy a
bureaucratic process.

If we define a performance goal as
a point of reference, we can use it
throughout the whole development
cycle and testing process and track
our progress from the performance
engineering point of view. Tracking
this metric in production will give us
valuable feedback that can be used
for future system releases.

 REFERE NCE S

1 Guide to the Software Engineering Body of

Knowledge (SWEBOK). IEEE, 2004.
http://www.computer.org/portal/web/swebok

2 Barber, S. Get performance requirements right

- think like a user, Compuware white paper,
2007. http://www.perftestplus.com/resources/
requirements_with_compuware.pdf

3 Sevcik, P. Using Apdex to Manage Performance,
CMG, 2008.
http://www.apdex.org/documents/
Session318.0Sevcik.pdf

4 Miller, R. B. Response time in user-system
conversational transactions, In Proceedings of the
AFIPS Fall Joint Computer Conference, 33, 1968,
267-277.

5 Nielsen J. Response Times: The Three Important

Limits, Excerpt from Chapter 5 of Usability
Engineering, 1994. http://www.useit.com/
papers/responsetime.html

6 Bickford P. Worth the Wait? Human Interface
Online, View Source, 10/1997.
http://web.archive.org/web/20040913083444/
http://developer.netscape.com/viewsource/
bickford_wait.htm

7 Sevcik, P. How Fast Is Fast Enough, Business
Communications Review, March 2003,
8–9. http://www.bcr.com/architecture/
network_forecasts%10sevcik/how_fast_is_fast_
enough?_20030315225.htm

8 eCommerce Web Site Performance Today.
Forrester Consulting on behalf of Akamai
Technologies, 2009. http://www.akamai.com/
html/about/press/releases/2009/press_091409.
html

9 Bass L., Clements P., Kazman R. Software
Architecture in Practice, Addison-Wesley, 2003.
http://etutorials.org/Programming/Software+
architecture+in+practice,+second+edition

10 Simmons E. Quantifying Quality Requirements
Using Planguage, Quality Week, 2001.
http://www.clearspecs.com/downloads/
ClearSpecs20V01_Quantifying%2 Quality%20

Requirements.pdf

11 Bolton M. More Stress, Less Distress, Better
Software, November 2006. http://www.
stickyminds.com/sitewide.asp?ObjectId=11536
&Function=edetail&ObjectType=ART

About the Author

Alex Podelko has specialized in performance
engineering for the last fourteen years.
Currently he is Consulting Member of
Technical Staff at Oracle, responsible for
performance testing and tuning of Hyperion
products. Alex has more than 20 years of
overall IT experience and holds a PhD in
Computer Science from Gubkin University and
an MBA from Bellevue University. Alex serves
as a board director for Computer Measurement
Group (CMG), His collection of performance-
related links and documents can be found at
http://www.alexanderpodelko.com/

http://www.perftestplus.com/resources/requirements_with_compuware.pdf
http://www.perftestplus.com/resources/requirements_with_compuware.pdf
http://www.apdex.org/documents/Session318.0Sevcik.pdf
http://www.apdex.org/documents/Session318.0Sevcik.pdf

