
and development. If there are no written perform-
ance requirements, it means that they exist in the
heads of stakeholders, but nobody bothered to
write them down and make sure that everybody
agrees on them.

Exactly what is specified may vary significantly
depending on the system and environment, but
all requirements should be quantitative and meas-
urable. Performance requirements are the main
input for performance testing (where they are
verified), as well as capacity planning and pro-
duction monitoring.

There are several classes of performance
requirements. Most traditional are response time
(how fast the system can handle individual
requests) and throughput (how many requests
the system can handle). All classes are vital: Good
throughput with a long response time often is
unacceptable, as is good response time with low
throughput.

Response time (in the case of interactive work) or

processing time (in the case of batch jobs or sched-
uled activities) defines how fast requests should be
processed. Acceptable response times should be
defined in each particular case. A time of 30 min-
utes could be excellent for a big batch job, but
absolutely unacceptable for accessing a Web page
in a customer portal. Response time depends on
workload, so you must define conditions under
which specific response times should be
achieved; for example, a single user, average load or
peak load.

Significant research has been done to define
what the response time should be for interactive sys-
tems, mainly from two points of view: what response
time is necessary to achieve optimal user’s perform-
ance (for tasks like entering orders) and what
response time is necessary to avoid Web site aban-
donment (for the Internet). Most researchers
agreed that for most interactive applications, there
is no point in making the response time faster than
one to two seconds, and it’s helpful to provide an
indicator (like a progress bar) if it takes more than

eight to 10 seconds.
The service/stored procedure response-time

requirement should be determined by its share in
the end-to-end performance budget. In this way,
the worst-possible combination of all required serv-
ices, middleware and presentation layer overheads
will provide the required time. For example, with a
Web page with 10 drop-down boxes calling 10 sepa-
rate services, the response time objective for each
service may be 0.2 seconds to get three seconds
average response time (leaving one second for net-
work, presentation and rendering).

Response times for each individual transaction
vary, so use some aggregate values when specify-

18 • Software Test & Performance JANUARY 2008

Alexander Podelko is a software consultant currently
engaged by Oracle.

By Alexander Podelko

Defining performance requirements is
an important part of system design

JANUARY 2008 www.stpmag.com • 19

ing performance requirements, such as averages or per-
centiles (for example, 90 percent of response times are less
than X). Maximum/timeout times should be provided also,
as necessary.

For batch jobs, remember to specify all schedule-related
information, including frequency (how often the job will be
run), time window, dependency on other jobs and dependent
jobs (and their respective time windows to see how changes in
one job may impact others).

Throughput is the rate at which incoming requests are com-

pleted. Throughput defines the load on the system and is
measured in operations per time period. It may be the num-
ber of transactions per second or the number of adjudicated
claims per hour.

Defining throughput may be pretty straightforward for a
system doing the same type of business operations all the time,
processing orders or printing reports. It may be more difficult
for systems with complex workloads: The ratio of different
types of requests can change with the time and season.

It’s also important to observe how throughput varies with

20 • Software Test & Performance JANUARY 2008

time. For example, throughput can be
defined for a typical hour, peak hour
and non-peak hour for each particular
kind of load. In some cases, you’ll need
to further detail what the load is hour-
by-hour.

The number of users doesn’t, by
itself, define throughput. Without
defining what each user is doing and
how intensely (i.e., throughput for one
user), the number of users doesn’t
make much sense as a measure of load.
For example, if 500 users are each run-
ning one short query each minute, we
have throughput of 30,000 queries per
hour. If the same 500 users are running
the same queries, but only one query
per hour, the throughput is 500 queries
per hour. So there may be the same 500
users, but a 60X difference between
loads (and at least the same difference
in hardware requirements for the appli-
cation—probably more, considering
that not many systems achieve linear
scalability).

Response Times:
Review of Research
As long ago as 1968, Robert B. Miller’s
paper “Response Time in Man-
Computer Conversational Transactions”
described three threshold levels of
human attention1. J. Nielsen believes
that Miller’s guidelines are fundamental
for human-computer interaction, so
they are still valid and not likely to
change with whatever technology comes
next 2. These three thresholds are:

• Users view response time as instanta-
neous (0.1-0.2 second): They feel
that they directly manipulate
objects in the user interface; for
example, the time from the
moment the user selects a column
in a table until that column high-
lights or the time between typing a
symbol and its appearance on the
screen. Miller reported that thresh-
old as 0.1 seconds. According to P.
Bickford, 0.2 second forms the
mental boundary between events
that seem to happen together and
those that appear as echoes of each
other 3.

Although it’s a quite important
threshold, it’s often beyond the reach of
application developers. That kind of
interaction is provided by operating sys-
tem, browser or interface libraries, and
usually happens on the client side with-
out interaction with servers (except for
dumb terminals, that is rather an excep-

tion for business systems today).
• Users feel they are interacting freely

with the information (1-5 seconds):
They notice the delay, but feel the
computer is “working” on the com-
mand. The user’s flow of thought
stays uninterrupted.

Miller reported this threshold as one
second. Using the research that was avail-
able to them, several authors recom-
mended that the computer should
respond to users within two seconds 1, 4, 5.
Another research team reported that
with most data entry tasks, there was no
advantage of having response times faster
than one second, and found a linear
decrease in productivity with slower

response times (from one to five sec-
onds)6. With problem-solving tasks, which
are more like Web interaction tasks, they
found no reliable effect on user produc-
tivity up to a five-second delay.

The complexity of the user interface
and the number of elements on the
screen both impact thresholds. Back in
1960s through 1980s, the terminal inter-
face was rather simple, and a typical task
was data entry, often one element at a
time. Most earlier researchers reported
that one to two seconds was the thresh-
old to keep maximal productivity.
Modern complex user interfaces with
many elements may have higher
response times without adversely
impacting user productivity. According

to Scott Barber, even users who are
accustomed to a sub-second response
time on a client/server system are
happy with a three-second response
time from a Web-based application7.

P. Sevcik identified two key factors
impacting this threshold8: the number of
elements viewed and the repetitiveness
of the task. The number of elements
viewed is the number of items, fields,
paragraphs etc. that the user looks at.
The amount of time the user is willing to
wait appears to be a function of the per-
ceived complexity of the request.

Users also interact with applications
at a certain pace depending on how
repetitive each task is. Some are highly
repetitive; others require the user to
think and make choices before pro-
ceeding to the next screen. The more
repetitive the task, the better the
expected response time.

That is the threshold that gives us
response-time usability goals for most
user-interactive applications. Response
times above this threshold degrade
productivity. Exact numbers depend
on many difficult-to-formalize factors,
such as the number and types of ele-
ments viewed or repetitiveness of the
task, but a goal of three to five seconds
is reasonable for most typical business
applications.

• Users are focused on the dialog (8+
seconds): They keep their attention
on the task. Miller reported this
threshold as 10 seconds. Anything
slower needs a proper user inter-
face (for example, a percent-done
indicator as well as a clear way for
the user to interrupt the opera-
tion). Users will probably need to
reorient themselves when they
return to the task after a delay
above this threshold, so productivi-
ty suffers.

A Closer Look At
User Reactions
Peter Bickford investigated user reac-
tions when, after 27 almost instanta-
neous responses, there was a two-
minute wait loop for the 28th time for
the same operation. It took only 8.5
seconds for half the subjects to either
walk out or hit the reboot. Switching
to a watch cursor during the wait
delayed the subject’s departure for
about 20 seconds. An animated watch
cursor was good for more than a
minute, and a progress bar kept users
waiting until the end.

•
An animated watch

cursor was good

for more than a

minute, and a

progress bar kept

users waiting

until the end.

•

GAUGING PERFORMANCE

JANUARY 2008 www.stpmag.com • 21

Bickford’s results were widely used
for setting response times requirements
for Web applications. C. Loosley, for
example, wrote, “In 1997, Peter
Bickford’s landmark paper, ‘Worth the
Wait?’ reported research in which half
the users abandoned Web pages after a
wait of 8.5 seconds. Bickford’s paper
was quoted whenever Web site
performance was discussed,
and the ‘eight-second rule’
soon took on a life of its own as
a universal rule of Web site
design.”

A. Bouch attempted to iden-
tify how long users would wait
for pages to load 10. Users were
presented with Web pages that
had predetermined delays
ranging from two to 73 sec-
onds. While performing the
task, users rated the latency
(delay) for each page they
accessed as high, average or
poor. Latency was defined as
the delay between a request for
a Web page and the moment
when the page was fully rendered. The
Bouch team reported the following rat-
ings:

Good Up to 5 seconds
Average From 6 to 10 seconds
Poor More than 10 seconds
In a second study, when users

experienced a page-loading delay
that was unacceptable, they pressed a
button labeled “Increase Quality.”
The overall average time before
pressing the “Increase Quality” but-
ton was 8.6 seconds.

In a third study, the Web pages
loaded incrementally with the banner
first, text next and graphics last. Under
these conditions, users were much
more tolerant of longer latencies. The
test subjects rated the delay as “good”
with latencies up to 39 seconds, and
“poor” for those more than 56 seconds.

This is the threshold that gives us
response-time usability requirements
for most user-interactive applications.
Response times above this threshold
cause users to lose focus and lead to
frustration. Exact numbers vary signif-
icantly depending on the interface
used, but it looks like response time
should not be more than eight to 10
seconds in most cases. Still, the thresh-
old shouldn’t be applied blindly; in
many cases, significantly higher
response times may be acceptable
when appropriate user interface is

implemented to alleviate the problem.

Not-So-Traditional Performance
Requirements
While they’re considered traditional
and absolutely necessary for some
kind of systems and environments,
some requirements are often missed

or not elaborated enough for interac-
tive distributed systems.

Concurrency is the number of simul-
taneous users or threads. It’s impor-
tant: Connected but inactive users still
hold some resources. For example, the
requirement may be to support up to
300 active users, but the terminology
used to describe the number of users
is somewhat vague. Typically, three
metrics are used:

• Total or named users. All registered
or potential users. This is a metric
of data the system works with. It
also indicates the upper potential
limit of concurrency.

• Active or concurrent users. Users
logged in at a specific moment of
time. This is the real measure of
concurrency in the sense it’s used
here.

• Really concurrent. Users actually
running requests at the same
time. While that metric looks
appealing and is used quite often,
it’s almost impossible to measure
and rather confusing: the num-
ber of “really concurrent”
requests depends on the process-
ing time for this request. For
example, let’s assume that we got
a requirement to support up to 20
“concurrent” users. If one request
takes 10 seconds, 20 “concurrent”
requests mean throughput of 120

requests per minute. But here we
get an absurd situation that if we
improve processing time from 10
to one second and keep the same
throughput, we miss our require-
ment because we have only two
“concurrent” users.

To support 20 “concurrent” users
with a one-second response
time, you really need to
increase throughput 10 times
to 1,200 requests per minute.

It’s important to under-
stand what users you’re dis-
cussing: The difference
between each of these three
metrics for some systems may
be drastic. Of course, it
depends heavily on the nature
of the system.

Performance and Resource
Utilization
The number of online users
(the number of parallel ses-
sion) looks like the best metric
for concurrency (complement-

ing throughput and response time
requirements). Finding the number of
concurrent users for a new system can
be tricky, but information about real
usage of similar systems can help to
make the first estimate.

Resources. The amount of available
hardware resources is usually a vari-
able at the beginning of the design
process. The main groups of resources
are CPU, I/O, memory and network.

When resource requirements are
measured as resource utilization, it’s
related to a particular hardware con-
figuration. It’s a good metric when the
hardware the system will run on is
known. Often such requirements are a
part of a generic policy; for example,
that CPU utilization should be below
70 percent. Such requirements won’t
be very useful if the system deploys on
different hardware configurations,
and especially for “off-the-shelf” soft-
ware.

When specified in absolute values,
like the number of instructions to exe-
cute or the number of I/O per trans-
action (as sometimes used, for exam-
ple, for modeling), it may be consid-
ered as a performance metric of the
software itself, without binding it to a
particular hardware configuration.

In the mainframe world, MIPS was
often used as a metric for CPU con-
sumption, but I’m not aware of such a

•
When resource requirements are

measured as resource utilization,

it’s related to a particular

hardware configuration.

•

GAUGING PERFORMANCE

22 • Software Test & Performance JANUARY 2008

widely used metric in the distributed
systems world.

The importance of resource-related
requirements will increase again with
the trends of virtualization and service-
oriented architectures. When you
depart from the “server(s) per applica-
tion” model, it becomes difficult to
specify requirements as resource utiliza-
tion, as each application
will add only incremental-
ly to resource utilization
for each service used.

Scalability is a system’s
ability to meet the per-
formance requirements as
the demand increases
(usually by adding hard-
ware). Scalability require-
ments may include
demand projections such
as an increasing number
of users, transaction vol-
umes, data sizes or adding
new workloads.

From a performance
requirements perspective,
scalability means that you
should specify perform-
ance requirements not
only for one configura-
tion point, but as a func-
tion, for example, of load
or data.

For example, the
requirement may be to
support throughput
increase from five to 10 transactions per
second over the next two years, with
response time degradation not more
than 10 percent. Most scalability
requirements I’ve seen look like “to sup-
port throughput increase from five to
10 transactions per second over next
two years without response time degra-
dation”—that’s possible only with addi-
tion of hardware resources.

Other contexts. It’s very difficult to
consider performance (and, there-
fore, performance requirements)
without context. It depends, for exam-
ple, on hardware resources provided,
the volume of data operated on and
the functionality included in the sys-
tem. So if any of that information is
known, it should be specified in the re-
quirements.

While the hardware configuration
may be determined during the design
stage, the volume of data to keep is
usually determined by the business
and should be specified.

The Difference Between Goals
And Requirements
One issue, as Barber notes, is goals versus
requirements11. Most response time
“requirements” (and sometimes other
kinds of performance requirements) are
goals (and sometimes even dreams), not
requirements: something that we want to
achieve, but missing them won’t neces-

sarily prevent deploying
the system.

You may have both
goals and requirements
for each of the perform-
ance metrics, but for
some metrics/systems
,they are so close that
from the practical point
of view, you can use one.
Still, in many cases, espe-
cially for response times,
there’s a big difference
between goals and
requirements (the point
when stakeholders agree
that the system can’t go
into production with
such performance).

For many interactive
Web applications, re-
sponse time goals are two
to five seconds, and
requirements may be
somewhere between eight
seconds and one minute.

One approach may be
to define both goals and

requirements. The problem? Require-
ments are very difficult to get. Even if
stakeholders can define performance
requirements, quite often go/no-go
decisions are based not on the real
requirements, but rather on second-tier
goals.

In addition, using multiple per-
formance metrics that only together
provide the full picture can compli-
cate your process. For example, you
may state that you have a 10-second
requirement and you took 15 seconds
under full load. But what if you know
that this full load is the high load on
the busiest day of year, that the max
load for other days falls below 10 sec-
onds, and you see that it is CPU-con-
strained and may be fixed by a hard-
ware upgrade?

Real response time requirements
are so environment- and business-
dependent that for many applications,
it’s cruel to force people to make hard
decisions in advance for each possible

combination of circumstances. In-
stead, specify goals (making sure that
they make sense) and only then, if
they’re not met, make the decision
about what to do with all the informa-
tion available.

Knowing What Metrics to Use
Another question is how to specify
response time requirements or goals.
For example, such metrics as average,
max, different kinds of percentiles and
median can be used. Percentiles are
more typical in SLAs (service-level
agreements). For example, “99.5 per-
cent of all transactions should have a
response time less than five seconds.”

While that may be sufficient for
most systems, it doesn’t answer all
questions. What happens with the
remaining 0.5 percent? Does this 0.5
percent of transactions finish in six to
seven seconds or do all of them time
out? You may need to specify a combi-
nation of requirements: for example,
80 percent below four seconds, 99.5
percent below six seconds, 99.99 per-
cent below 15 seconds (especially if we
know that the difference in perform-
ance is defined by distribution of
underlying data). Other examples may
be average four seconds and max 12
seconds, or average four seconds and
99 percent below 10 seconds.

Things get more complicated when
there are many different types of trans-
actions, but a combination of per-
centile-based performance and avail-
ability metrics usually works fine for
interactive systems. While more
sophisticated metrics may be necessary
for some systems, in most cases sophis-
tication can make the process over-
complicated and difficult to analyze.

There are efforts to make an
objective user-satisfaction metric. One
is Application Performance Index
(www.Apdex.org). Apdex is a single
metric of user satisfaction with the per-
formance of enterprise applications.
The Apdex metric is a number
between 0 and 1, where 0 means that
no users were satisfied, and 1 means all
users were satisfied.

The approach introduces three
groups of users: satisfied, tolerating
and frustrated. Two major parameters
are introduced: threshold response
times between satisfied and tolerating
users T, and between tolerating and
frustrated users F 12. There probably is
a relationship between T and the

•
Using multiple

performance

metrics that only

together provide

the full picture

can complicate

your process.

•

GAUGING PERFORMANCE

JANUARY 2008 www.stpmag.com • 23

response time goal and between F and
the response time requirement.

Where Do Performance
Requirements Come From?
If you look at performance require-
ments from another point of view, you
can classify them into business, usabil-
ity and technological requirements.
Business requirements come directly
from the business and may be cap-
tured very early in the project life
cycle, before design starts. For a
requirement such as ”A customer rep-
resentative should enter 20 requests
per hour, and the system should sup-
port up to 1,000 customer representa-
tives,” requests should be processed in
five minutes on average, throughput
would be up to 20,000 requests per
hour, and there could be up to 1,000
parallel sessions.

The main trap here is to immedi-
ately link business requirements to a

specific design, technology or usability
requirement, thus limiting the num-
ber of available design choices. If we
consider a Web system, for example,
it’s probably possible to squeeze all the
information into a single page or have
a sequence of two dozen screens. All
information can be saved at once, or
each page of these two dozen can be

saved separately. We have the same
business requirements, but response
times per page and the number of
pages per hour would be different.

Usability requirements (mainly
related to response times) also figure
into the performance equation. Many
researchers agree that users lose focus
if response times are
more than eight to 10
seconds, and that
response times should be
two to five seconds for
maximum productivity.
These usability consider-
ations may influence
design choices (such as
using several Web pages
instead of one). In some
cases, usability require-
ments are linked closely
to business require-
ments; for example,
make sure that your sys-

t e m ’ s
r e s p o n s e
times aren’t
worse than
r e s p o n s e
times of
similar or

competitor systems.
The third category, technological

requirements, comes from chosen design
and used technology. Some technologi-
cal requirements may be known from the
beginning if some design elements are
used, but others are derived from busi-
ness and usability requirements through-
out the design process and depend on

the chosen design.
For example, if we need to call 10

Web services sequentially to show the
Web page with a three-second response
time, the sum of response times of each
Web service, the time to create the Web
page, transfer it through the network
and render it in a browser should be
below three seconds. That may be trans-
lated into response-time requirements
of 200-250 milliseconds for each Web
service.

The more we know, the more accu-
rately we can apportion overall response
time to Web services. Another example of
technological requirements can be found
in the resource consumption re-
quirements. In its simplest form, CPU
and memory utilization should be below

70 percent for the chosen
hardware configuration.

Business requirements
should be elaborated dur-
ing design and develop-
ment, and merge togeth-
er with usability and tech-
nological requirements
into the final perform-
ance requirements, which
can be verified during
testing and monitored in
production. The main
reason that we separate
these categories is to
understand where the
requirement comes from:
Is it a fundamental busi-
ness requirement or a
result of a design decision
that may be changed if
necessary?

Determining specific
performance require-
ments is another large
topic that is difficult to for-
malize. Consider the

approach suggested by Sevcik for find-
ing T, the threshold between satisfied
and tolerating users. T is the main
parameter of the Apdex (Application
Performance Index) methodology, pro-
viding a single metric of user satisfac-
tion with the performance of enterprise
applications. Sevcik defined 10 differ-
ent methods (see Table 1).

The idea is to use several (say, three)
of these methods for the same system. If
all come to approximately the same num-
ber, they give us T. While the approach
was developed for production monitor-
ing, there is definitely a strong correla-
tion between T and the response time

•
Small

anomalies

from expected

behavior are

often signs

of bigger

problems.

•

TABLE 1:THE SEVCIK METHODS

1. Default value (the Apdex methodology

suggests 4 seconds)

2. Empirical data
3. User behavior model (number of

elements viewed/task repetitiveness)

4. Outside references

5. Observing the user

6. Controlled performance experiment

7. Best time multiple

8. Find frustration threshold F first and

calculate T from F (the Apdex method-

ology assumes that F = 4T)

9. Interview stakeholders

10. Mathematical inflection point

GAUGING PERFORMANCE

24 • Software Test & Performance JANUARY 2008

goal (having all users satisfied sounds as a
pretty good goal) and between F and the
response time requirement. So the
approach probably can be used for get-
ting response time requirements with
minimal modifications.

While some specific assumptions
like four seconds for
default or the F = 4T
relationship may be ip
for argument, the ap-
proach itself conveys the
important message that
there are many ways to
determine a specific per-
formance requirement,
which, for validation
purposes, is best derived
from several sources.
Depending on your sys-
tem, you can determine
which methods from the
above list (or maybe
some others) are appli-
cable, calculate the met-
rics and determine your
requirements.

Requirements
Verification:
Performance vs. Bugs
Requirement verification
presents another subtle
issue: how to differenti-
ate performance issues
from functional bugs
exposed under load.
Often, additional investigation is
required before you can determine
the cause of your observed results.
Small anomalies from expected behav-
ior are often signs of bigger problems,
and you should at least to figure out
why you get them.

When 99 percent of your response
times are three to five seconds (with the
requirement of five seconds) and 1 per-
cent of your response times are five to
eight seconds, it usually isn’t a problem.
But it probably should be investigated if 1
percent fail or have strangely high
response times (for example, more than
30 seconds, with 99% three to five sec-
onds) in an unrestricted, isolated test
environment.

This isn’t due to some kind of arti-
ficial requirement, but is an indication
of an anomaly in system behavior or
test configuration. This situation often
is analyzed from a requirements point
of view, but it shouldn’t be, at least
until the reasons for that behavior

become clear.
These two situations look similar,

but are completely different in nature:
1.) The system is missing a require-
ment, but results are consistent: This is
a business decision, such as a cost vs.
response time tradeoff; and 2.) Results

aren’t consistent (while
requirements can even be
met): This may indicate a
problem, but its scale
isn’t clear until investigat-
ed.

Unfortunately, this view
is rarely shared by devel-
opment teams too eager to
finish the project, move it
into production, and
move on to the next proj-
ect. Most developers
aren’t very excited by the
prospect of debugging
code for small memory
leaks or hunting for a rare
error that’s difficult to
reproduce. So the devel-
opment team becomes
very creative in finding
“explanations.”

For example, growing
memory and periodic
long-running transactions
in Java are often explained
as a garbage collection
issue. That’s false in most
cases. Even in the few
instances when it is true, it

makes sense to tune garbage collection
and prove that the problem is gone.

Teams can also make fatal assump-
tions, such as thinking all is fine when
the requirements stipulate that 99 per-
cent of transactions should be below X
seconds, and less than 1 percent of
transactions fail in testing.

Well, it doesn’t look fine to me. It
may be acceptable in production over
time, considering network and hard-
ware failures, OS crashes, etc. But if the
performance test was run in a controlled
environment and no hardware/OS fail-
ures were observed, it may be a bug. For
example, it could be a functional prob-
lem for some combination of data.

When some transactions fail under
load or have very long response times in
the controlled environment and you
don’t know why, you’ve got one or more
problems.

When you have an unknown prob-
lem, why not trace it down and fix it in
the controlled environment? What if

these few failed transactions are a view
page for your largest customer, and you
won’t be able to create an order until
it’s fixed?

In functional testing, as soon as you
find a problem, you usually can figure
out how serious it is. This isn’t the case
for performance testing: Usually you
have no idea what caused the observed
symptoms or how serious it is, and
quite often the original explanations
turn out to be wrong.

Michael Bolton described the situa-
tion concisely 13:

As Richard Feynman said in his appen-
dix to the Rogers Commission Report on the
Challenger space shuttle accident, when
something is not what the design expected,
it’s a warning that something is wrong.
“The equipment is not operating as expected,
and therefore there is a danger that it can
operate with even wider deviations in this
unexpected and not thoroughly understood
way.” When a system is in an unpredicted
state, it’s also in an unpredictable state.

Raising Performance
Consciousness
We need to specify performance
requirements at the beginning of any
project for design and development
(and, of course, reuse them during
performance testing and production
monitoring). While performance
requirements are often not perfect,
forcing stakeholders just to think
about performance increases the
chances of project success.

What exactly should be specified—
goal vs. requirements (or both), aver-
age vs. X percentile vs. Apdex, etc.—
depends on the system and environ-
ment, but all requirements should be
both quantitative and measurable.
Making requirements too complicated
may hurt here. You need to find mean-
ingful goals/requirements, not invent
something just to satisfy a bureaucratic
process.

If you define a performance goal as
a point of reference, you can use it
throughout the whole development
cycle and testing process, tracking
your progress from a performance
engineering viewpoint. Tracing this
metric in production will give you valu-
able feedback that can be used for
future system releases. ý

REFERENCES
1. Miller, R. B. Response Time in User-system

Conversational Transactions, In Proceedings of the
AFIPS Fall Joint Computer Conference, 33, 1968.

•
Usually

you have

no idea

what caused

the observed

symptoms

or how

serious it is.

•

GAUGING PERFORMANCE

