
Engineers who are learning about
designing structures will attend a class
on how to create a model of a pro-

posed structure and determine how
well it will hold up to various environ-
mental factors. One of those factors
may be weight, or load. Other factors
may be wind, rain, or stress. When
engineers write software, the same fac-
tors apply. However, the load or stress
applied to software is not bricks, wind,
or rain. It is the number of users. 

Unfortunately, theories don’t guar-
antee a required level of performance
for software. Much has been written
about how to design scalable software,
what best practices and design patterns
to use, and even how to build models to
predict performance. While that is
important to creating scalable software,
this still isn’t an exact science, and test-
ing multiuser applications under realis-
tic as well as stress loads is really the
only way to ensure appropriate per-
formance and reliability in production.

Performance testing is emerging as
an engineering discipline of its own,

Alexander Podelko is principal performance
engineer at Hyperion Solutions in Stamford,
Conn. He holds a Ph.D. in Computer Science
from Gubkin University and an MBA from
Bellevue University. He can be contacted at
alexander_podelko@hyperion.com.

To ensure that your scalable software 

system will be sturdy, stress test it and

expose its hidden flaws. By Alexander Podelko

MARCH 2005 www.stpmag.com • 33

Effective Load Testing

mailto:alexander_podelko@hyperion.com


34 • Software Test & Performance MARCH 2005

based on “classic” functional testing
from one side and system performance
analysis and capacity planning from
another side. The terminology is still
vague in this field and the borders are
fuzzy, but from a practical point of view,
we probably can break down all testing
into two key classes: those with a multi-
user load (such as load, performance,
stress, volume) and those without it
(such as functional regression). 

The different terms of each of
these classes specify why we are testing
and what result we are looking for,
rather than what process is being
used. There is no precise definition
for each term; the exact meaning can
differ from source to source. For
example, performance testing could
mean that we are most interested in
response time; load testing could
mean that we want to see the system’s
behavior under a specific load, and
stress testing could mean that we want
to find the system’s breaking point.
We still do the same things: apply a
multi-user load and get some metrics.
The difference is only in the details—
what load we apply and what metrics
are more important to us.

These two classes do not match the
terms completely: We can do perform-
ance testing for one user, measuring
response times with a stopwatch, or test
the functionality of the system while
having a 100-user load in the back-
ground. Moreover, performance is an
element of functionality in some sense.
We still refer to testing under a multi-

user workload as load or performance
testing and contrast it to classical single-
user functional testing.

Both classes of testing have a lot in
common. Still, load testing has signif-
icant specifics and requires some spe-
cial approaches and skills. Quite
often, applying the best practices and
metrics of functional testing to load
testing results in disappointments.
Many things that are trivial to an
experienced performance engineer
can easily escape the attention of a
person with less experience, which
often results in unrealistic expecta-
tions, less than optimal test planning
and design, and misleading results. 

In this article I’ll outline some
issues to consider in performance test-
ing and present the typical pitfalls
from a practical point of view. The list
is meant to contrast load testing with
functional testing; the things common
to the two are not discussed here.
Although most of the recommenda-
tions are still valid for functional test-
ing, they are much more important for
performance testing. The selection is
based on the extensive experience of
Hyperion Performance Engineering
Group and on extensive discussions
with experts in load testing. 

This article doesn’t pretend to be
comprehensive or to maintain a strict
scientific approach; it is merely based
on observations, mainly relating to
the performance testing of distrib-
uted business applications. Some
adjustments may be necessary for
other classes of software.  

What to Test
Since functional testing offers an
unlimited number of possible test
cases, the art of testing is to choose a
limited set of test cases that will best
check the product functionality given
resource limitations. It is much worse
with load testing: Each user can follow
a different scenario (a sequence of
functional steps), and even the
sequence of steps of one user versus
the steps of another user could affect
results significantly. 

Load testing can’t be comprehen-
sive. Several scenarios (use cases, test
cases) should be chosen. Usually they
are the most typical scenarios, the
ones that most users are likely to fol-

low. It is a good idea to identify sever-
al classes of users—for example,
administrators, operators, users, and
analysts. It is simpler to identify typi-
cal scenarios for any particular class of
users. With that approach, rare use
cases are ignored. For example, all
administrator-type activities can be
omitted, as there are few of them
compared with other activities. 

Another important criterion is risk.
If a “rare” activity presents a major
inherent risk, it can be a good idea to
add it to the scenarios to test. For
example, if database backups can sig-
nificantly affect performance and
should be done in parallel with regular
work, it makes sense to include a back-
up scenario in performance testing.

Code coverage usually doesn’t
make much sense in load testing; it’s
important to know what parts of code
are being processed in parallel by dif-
ferent users (almost impossible to
track, of course), not that any particu-
lar piece of code was executed.
Perhaps it’s possible to speak about
component coverage, making sure
that all of the important components
of the system are involved in perform-
ance testing. For example, if different
components are responsible for print-
ing HTML and PDF reports, it’s a good
idea to include both kinds of printing.

Other Requirements 
In addition to functional require-
ments (which are still valid for per-
formance testing—the system still
should do everything it is designed to
do under load), there are two other
classes of requirements: response
times (how fast the system can handle
individual requests, or what a real
user will experience) and throughput
(how many requests the system can
handle simultaneously). 

Acceptable response times should
be defined in each particular case. A
response time of 30 minutes may be
excellent for a big batch job, but it is
absolutely unacceptable for accessing
a Web page for an online store.
Although it is often difficult to draw
the line here, common sense is the
key. Keep in mind that for multiuser
testing, we get a range of response
times for each transaction, so we need
to use some aggregate values, such as

LOAD TESTING



MARCH 2005 www.stpmag.com • 35

average or 90th percentile (90 per-
cent of response times are less than
the given value). 

Throughput is a little trickier. Quite
often the number of users is used to
define load. Without defining what
each user is doing and how intensely,
the number of users doesn’t make
much sense as a measure of through-
put. For example, if 500 users are run-
ning short queries each minute, we
have a throughput of 30,000 queries
per hour. However, if the same 500
users are running the same queries at
a rate of one per hour, we have a
throughput of 500 queries per hour.
So with the same 500 users, you can
have a sixty-fold difference between
loads (and, in all likelihood, hardware
requirements for the system).   

The intensity of the load can be
controlled by adding
delays (often referred
to as “think time”)
between actions in
scripts or harness
code. So one ap-
proach is to start with
the total throughput
the system should
handle, then find the
number of concur-
rent users, get the
number of transac-
tion per user for the
test, and then try to
set “think times” to
ensure you’ll have the
proper number of
transactions per user.

Finding the number of concurrent
users for a new system can be tricky,
too. Usually, information about real
usage of similar systems can help you
make an initial estimate. One wide-
spread assumption for business appli-
cations, for example, is that 10 per-
cent of named (registered in the sys-
tem) users are active (logged) and 10
percent of these active users run con-
current requests (so 1,000 named
users will mean 100 active users and
10 concurrent users). These numbers
will depend greatly on the nature of
the system.

Workload Implementation 
If we work with a new system—that is,
one against which we have never run a

load test—the first question (after, of
course, we know what to test) is how to
create load. Are we going to generate
it manually, use a load-testing tool, or
will we create a test harness? 

Manual testing will sometimes work
if we want to simulate a small number
of users, but even if it’s well organized,
manual testing will introduce some
variation in each test, making our
results less reproducible. Workload
implementation using a tool (software
or hardware) is quite straightforward
when the system has a pure HTML
interface, but even if there is so much
as an applet on the client side, it can
become a serious research task, not
to mention requiring you to deal
with proprietary protocols. Creating
a test harness requires more knowl-
edge about the system (for example,

about an API) and
some programming
skills. Each choice
requires different
skills, resources, and
investments. 

When starting a
new load-testing proj-
ect, the first thing to
do is to decide how
the workload will be
implemented and to
check that this way
will really work. After
we decide how to
create the workload,
we need to find a way
to verify that the
workload is actually

being applied.

Workload Verification 
Unfortunately, an absence of error
messages during a load test does not
mean that the system worked correctly.
An important part of load testing is
workload verification; we should be
sure that the applied workload is doing
what it is supposed to do and that all
errors are caught and logged. Work-
load can be verified directly (analyzing
server responses), or, in cases where
this is impossible, indirectly (for exam-
ple, analyzing the application log for
the existence of particular entries).
Many tools provide some way to verify
workload and check errors, but a com-
plete understanding of what exactly is

happening is necessary. 
For example, Mercury Interactive’s

LoadRunner reports only HTTP
errors for Web scripts by default (such
as “500 Internal Server Error”). If we
rely on the default diagnostics, we
could still believe that everything is
going well when we’re actually getting
out-of-memory errors instead of the
requested reports. To catch such
errors, we should add special com-
mands to check the content of HTML
pages returned by the server to our
script and enable these checks in the
runtime options.

The Effect of Data 
The size and structure of data can
affect load test results. Using a small
sample set of data for performance
tests is an easy way to get misleading
results. It is difficult to predict how
much the data size will affect perform-
ance before real testing. The closer
the test data is to production data, the
better (although testing with larger
data sets makes a lot of sense, to en-
sure that the system will work when
more data has been accumulated).

Running multiple users hitting the
same set of data (for example, play-
back of an automatically created
script without proper modifications)
is an easy way to get misleading
results. This data could be completely
cached, and we’ll get much better
results than in production. Or it
could cause concurrency issues, and
we’ll get much worse results than in
production. So scripts and test har-
nesses usually should be parameter-
ized—fixed or recorded data should
be replaced with values from a list of
possible choices—so that each user
uses a proper set of data. “Proper”
here means that the data sets are dif-
ferent enough to avoid problems with
caching and concurrency. The data
sets should be specific for the system,
the data and the test requirements.

Another easy trap with data is
adding new data during the tests with-
out sufficient consideration. Each new
test will create additional data, so each
test should be executed with a differ-
ent amount of data. One way of run-
ning such tests successfully is to restore
the system to the original state after
each test or group of tests. Alternative-

LOAD TESTING

In load testing,

users can follow

different scenarios,

or sequences of

steps, and this can

affect test results

significantly.



38 • Software Test & Performance MARCH 2005

ly, additional tests can be performed to
prove that it may not matter in a par-
ticular case.

Exploring the System 
At the beginning of a new project, it’s
good to run some tests first to figure
out how the system behaves before cre-
ating formal plans. If no performance
tests have been run, there’s no way to
predict how many users the system can
support and how each scenario will
affect overall performance. 

It’s good to check that we do not
have any inherent functional prob-
lems: For example, is it possible to run
all the requested scenarios manually?
Are there any performance issues with
just one or with several users? Are
there enough computer resources to
support the requested scenarios? If we
find a functional or performance
problem with one user, usually it
should be fixed before starting per-
formance testing with that scenario.

Even if there are big plans for per-
formance testing, an iterative ap-
proach will fit better. As soon as a new
script is ready, run it. This will help
you understand how well the system
can handle a specific load. The results
you get can help you improve your
testing plans and discover many issues
early. By running tests, we are learn-
ing the system and may find out that
the original ideas about the system
were not entirely correct. A “water-
fall” approach, with all scripts created
before running any multiuser test, is
dangerous here: We’ll encounter is-

sues later and may find out that a lot
of work must be redone.

Unspecified Requirements 
Usually, when people talk about per-
formance testing they do not separate
it from tuning, diagnostics or capacity
planning. “Pure” performance testing
is possible only in rare cases when the
system and all optimal settings are well
known. Usually some tuning activities
are necessary at the beginning of the
testing to be sure that the system is
properly tuned and the results will be
meaningful. In most cases, if a per-
formance or reliability problem is
found, it should be diagnosed further,
until it becomes clear how to handle it.
Generally speaking, performance test-
ing, tuning, diagnostics and capacity
planning are quite different processes,
and not explicitly including any of
them in the test plan will render the
plan unrealistic from the beginning.

Time Considerations 
Performance tests usually take more
time than functional tests. Usually, we
are interested in the steady mode dur-
ing load testing. It means that all
users need to log in and work for
some time to be sure that we will see
a stable pattern of performance and
resource utilization. Measuring per-
formance during transition periods
can be misleading. The more users we
simulate, the more time we will usual-
ly need to get into the steady mode.
Moreover, some kinds of testing (reli-
ability, for example) can require a sig-
nificant amount of time, from several
hours to several days or even weeks.
Therefore, the number of tests that
can be run per day is limited. It’s
especially important to consider this
during tuning or diagnostics, when
the number of iterations is unknown
and can be large.

Simulating real users requires
time, especially if it involves more
than just repeating actions, such as
entering orders, and perhaps some
kind of process in which some actions
will follow others. We can’t just
squeeze several days of regular work
into 15 minutes for each user; this is
far from a simulation of real work.
Testing  should involve a slice of work,
not a squeeze.

In some cases we can make the
load from each user more intensive,
and respectively decrease the number
of users to keep the total volume of
work (that is, the throughput) the
same. For example, you can simulate
100 users running a small report
every five minutes instead of 300
users running that report every 15
minutes. In this case, we can speak
about the ratio of simulated users to
real users (1:3 for that example). This
is especially useful when we need to
perform a lot of tests during tuning of
the system, or when we’re trying to
diagnose the problem to see the
results of changes quickly. Quite
often that approach is used when
there are license limitations.

Still, “squeezing” should only be
used in addition to full-scale simula-
tion, not instead of it.  Each user
consumes additional resources for
connections, threads, caches and so
forth. The exact impact depends on
the system implementation, so a sim-
ulation of 100 users running a small
report every 10 minutes doesn’t
guarantee that the system will sup-
port 600 users running that report
every hour. 

Moreover, tuning for 600 users
can differ significantly from tuning
for 100 users. The higher the ratio
between simulated and real users,
the more you’ll need to run all users
to be sure that the system supports
that number of users and is properly
tuned.

What Affects the Process 
Three specific characteristics of load
testing affect the testing process and
often require closer work with devel-
opment to fix problems than func-
tional testing does. 

First, a reliability or performance
problem often blocks further per-
formance testing until the problem
can be fixed or a workaround found. 

Second, usually the full setup
should be used to reproduce the
problem. However, keeping the full
setup at test for a long time can be
expensive or even impossible. 

Third, debugging performance
problems is a sophisticated diagnostic
process that usually requires close col-
laboration between a performance

LOAD TESTING



MARCH 2005 www.stpmag.com • 39

engineer (running tests and analyz-
ing the results) and a developer (pro-
filing and altering code). Many tools,
such as debuggers, work fine in a sin-
gle-user environment, but do not
work in the multiuser environment.

These three characteristics make it
difficult to use an asynchronous
process in load testing. An asynchro-
nous process, most commonly used in
functional testing, is one in which
testers look for bugs and then log
them into a defect tracking system.
Afterward, development will prioritize
the defects and fix each one. What is
often required is the synchronized
work of performance engineering and
development to fix the problems and
complete performance testing.

A Systematic Approach 
To Changes 
The tuning (and often diagnostic)
process consists of making changes in
the system and evaluating their
impact on performance (or the prob-
lems they uncover). It is important to
take a systematic approach to these
changes. This could be, for example,

the traditional approach of “one
change at a time” (also often referred
to as “one factor at a time,” or OFAT),
or using design of experiments
(DOE) theory. “One change at a
time” here does not imply changing
just one variable; it can mean chang-
ing several related variables to check
a particular hypothesis. 

The relationship between changes
in the system parameters and changes
in the product behavior is usually
quite complex. Any assumption based
on common sense can be wrong. A sys-
tem’s reaction can be quite the oppo-
site of what’s expected under heavy
load, so changing several things at
once without a systematic approach
will not yield an understanding of how
each change affects results. This could
degrade the testing process and lead
to incorrect conclusions. All changes
and their effects should be logged to
allow for rollback and further analysis.

Analyzing Results
The results of load testing are usually
difficult to interpret as merely
passed/failed. Even if we do not need

to tune the system or diagnose a prob-
lem, we usually should consider not
only transaction response times for all
different transactions (usually using
aggregating metrics such as average
response times or 90th percentiles),
but also other metrics such as resource
utilization. Results analysis of load test-
ing for enterprise-level systems can be
quite difficult and should be based on
good knowledge of the system and its
performance requirements, and it
should involve all possible sources of
information: measured metrics, results
of monitoring during the test, all avail-
able logs and profiling results (if avail-
able). For example, a heavy load on
load-generator machines can com-
pletely skew results, and the only way
to know that is to monitor those
machines.

Results always vary in multiuser
tests, due to minor differences in the
test environment. If the difference is
large, it is worth analyzing why and
adjusting tests accordingly. For exam-
ple, you can restart the program (or
even reboot the system) before each
test to eliminate caching effects. ý

LOAD TESTING

Advertiser URL Page Number

AutomatedQA Corp. www.automatedqa.com page 8

Code Project www.empirix.com/stp page 11

iTKO Corp. www.iTKO.com page 2

Mercury Interactive Corp. www.mercury.com/performance Back Cover

Mindreef, Inc. www.mindreef.com/go page 3

SD West www.sdexpo.com page 25

Software Security Summit www.S-3con.com pages 36-37

Software Test & Performance Magazine www.stpmag.com pages 17, 32

Software Test & Performance Conference www.stpcon.com page 43

Seapine Software Inc. www.seapine.com page 6

Segue Software Inc. www.segue.com page 4

Index to Advertisers

http://www.automatedqa.com
http://www.empirix.com/stp
http://www.ITKO.com
http://www.mercury.com/performance
http://www.mindreef.com/go
http://www.sdexpo.com
http://www.S-3con.com
http://www.stpmag.com
http://www.stpcon.com
http://www.seapine.com
http://www.segue.com



