
 | w w w . s o f t w a r e t e s t p r o . c o m6

 W hile each kind of performance testing may
have different goals and test designs, in
most cases they use the same approach:
applying multi-user synthetic workload to

the system. The term ‘load testing’ is used further in this
article because, by author’s opinion, it better contrasts
multi-user testing with other performance engineering
methods, such as single-user performance testing.
Everything mentioned here applies to performance,
stress, concurrency, scalability, and other kinds of
testing as far as the system is tested by applying
multi-user load.

If we define load testing in this way, it becomes evident
that it is much wider than the stereotypical waterfall-
like last-moment record-and-replay load testing that
we often see in large corporations. Unfortunately load
testing often became associated with that stereotype that
makes it difficult to see a larger picture of load testing
as an important and integral part of the performance
engineering process.

The recent trends of cloud computing, agile
development, DevOps, and web operations are
drastically re-defining the IT landscape and to see how
they would impact load testing and how load testing
could be adjusted, it is important to see a bigger picture.
This article will consider load testing from a few different
angles, important from the recent trends point of view,
without diving into too many details.

Why Do We Need Load Testing?
Load testing is a way to mitigate load- and performance-
related risks. There are other approaches and
techniques that also alleviate performance risks:

z Single-User Performance Engineering.
Profiling, tracking and optimization of single-user
performance, Web Performance Optimization (WPO),
etc. Everything that helps to ensure that single-user
response times, the critical performance path, match
our expectations.

z Software Performance Engineering (SPE).
Performance patterns and anti-patterns, scalable
architectures, modeling, etc. Everything that helps
in selecting appropriate architecture and design and
proving that it will scale according to our needs.

z Instrumentation / Application Performance
Management / Monitoring. Everything that
provides insights in what is going on inside the
working system and tracks down performance issues
and trends.

z Capacity Planning / Management. Everything that
ensures that we will have enough resources for the
system.

z Continuous Integration / Deployment. Everything
allowing quick deployment and removal of changes,
decreasing the impact of performance issues.

of Load
Testing

What is Load Testing? Let’s first define load testing
as terminology is rather vague here. The term is used here
for everything that requires applying multi-user synthetic

load. Many different terms are used for such kind of multi-user
testing, such as performance, concurrency, stress, scalability,
endurance, longevity, soak, stability, reliability, etc. There are

different (and sometimes conflicting) definitions of these
terms. Mostly these terms describe testing from somewhat
different points of view, so they are not mutually exclusive.

 A
View

Bird’s-Eye

———————— ———————
by AlexanderPodelko

bIrd’seye | vIeW

Every approach or technique
mentioned above somewhat
mitigates performance risks and
improves chances that the system
will perform up to expectations;
however, none of them guarantees
that. And, moreover, none may
completely replace the others, as
each one addresses different facets
of performance.

In particular, none of the other
methods to mitigate performance
risks or their combination may
completely replace load testing.
Yes, they definitely decrease
performance risk compared to
situations where nothing is done
about performance at all until the
last moment before rolling out the
system in production without any
instrumentation, but they still leave
risks of crashing and performance
degradation under multi-user load.
And if its cost is high, you should
do load testing.

There are always risks of
crashing a system or experiencing
performance issues under heavy
load – and the only way to mitigate
them is to actually test it. Even
stellar performance in production
and a highly scalable architecture
don’t guarantee that it won’t crash
under a slightly higher load. Even
load testing doesn’t completely
guarantee it (for example, real-life
workload may be different from
what was tested), but it significantly
decreases the risk.

Another important value of
load testing is making sure that
changes don’t degrade multi-
user performance. Unfortunately,
better single-user performance
doesn’t guarantee better multi-user
performance. In many cases
it improves multi-user performance
too, but not always. And the more
complex the system is, the more
likely exotic multi-user performance
issues can be. Load testing is
the way to ensure that you
don’t have such issues.

And when you do performance
optimization, you need a
reproducible way to evaluate the
impact of changes on multi-user
performance. The impact of the
changes on multi-user performance
won’t probably be proportional
to what you see with single-user
performance (even if it would be
somewhat correlated). The actual
effect is difficult to quantify without
multi-user testing. The same with
the issues happening only in
specific cases that are difficult
to troubleshoot and verify
in production – using
load testing can
significantly
simplify the
process.

It may be possible to survive
without load testing by using other
ways to mitigate performance risks
if the cost of performance issues
and downtime is low. However, it
actually means that you use users
to test your system, addressing
only those issues that pop up;
this approach becomes risky once
performance and downtime start
to matter.

Moreover, with existing trends
of system self-regulation (such as
auto-scaling or changing the level of

services depending on load), load
testing is needed to verify

that functionality. You
need to apply heavy

load to see how
auto-scaling

will work.

V o l u m e 9 | I s s u e 6 7

of Load
Testing

 | w w w . s o f t w a r e t e s t p r o . c o m8

So load testing becomes a way to test functionality of
the system, blurring the traditional division between
functional and non-functional testing.

Load Testing Process Overview
Load testing is emerging as an engineering discipline
of its own, based on “classic” testing from one side,
and system performance analysis from another side.
A typical load testing process is shown in figure 1.

Fig.1 Load Testing Process

We explicitly define two different steps here: ‘define load’
and ‘create test assets’. The ‘define load’ step (sometimes
referred to as workload characterization or workload
modeling) is a logical description of the load we want
to apply (like “that group of users login, navigate to a
random item in the catalog, add it to the shopping cart,
pay, and logout with average 10 seconds think time
between actions”). The ‘create test assets’ step is the
implementation of this workload, and conversion of the
logical description into something that will physically
create that load during the ‘run tests’ step. While for
manual testing that can be just the description given to
each tester, usually it is something else in load testing –
a program or a script.

Quite often load testing goes hand-in-hand with tuning,
diagnostics, and capacity planning. They are actually
represented by the back loop on Fig.1: if we don’t meet
our goal, we need to optimize the system to improve
performance. Usually the load testing process implies
tuning and modification of the system to achieve the goals.

Load testing is not a one-time procedure. It spans
through the whole system development life cycle. It may
start from technology or prototype scalability evaluation,
continue through component / unit performance
testing into system performance testing and follow up in
production to troubleshoot performance issues and test
upgrades / load increases.

Load Generation
Before we can move forward from ‘define load’ to
‘create test assets’, we need to decide how we are
going to generate that load. Load generation can be
a simple technical step when you know how to do
it for your system (compared with other non-trivial
steps like collecting requirements, defining load, or
analyzing results). Unfortunately, quite often it is a
very challenging task for a new system, up to being
impossible in the given time frame. It is important to
understand all possible options; a single approach
may not work in all situations. The main choices are
to generate workload manually (really an option only
if you test few users), use a load testing tool (software
or hardware), or create a program to do it. Many tools
allow using different ways of recording/playing back
and programming. Let’s consider different approaches to
load generation and what are their pros and cons.

Record and Playback: Protocol Level
The mainstream approach of load testing (at least
for business and Internet applications) is recording
communication between two tiers of the system and
playing back the automatically created script (usually,
of course, after proper correlation and parameterization).
Tools used for that are usually referred to as “load
testing tools” and users simulated by such tools are
usually referred as “virtual users”. The real client-side
software isn’t necessary to replay such scripts, so the
number of simulated virtual users can be high; it is
theoretically limited only by available hardware (each
tool has specific hardware requirements depending
on the type and complexity of scripts).

Fig.2 Record and Playback Approach, Protocol Level

Both recording and playback happen between the
tiers, so the protocol used between the client and the
server is extremely important. Other factors, such as
what language was used to develop the system, what
platform the server is deployed on, etc. are usually
irrelevant for scripting (although they can give some
hints about what protocol is used for communication).

The process is reasonably straightforward when you test
a simple website or a simple web application with a thin
client. Even a beginner in load testing can quickly create
a few scripts and run tests. That is one reason why the
record and playback approach is so popular. However,
there is a trap in that easiness: load testing really embraces
much more. Load should be validated for correctness

bIrd’seye | vIeW

V o l u m e 9 | I s s u e 6 9

(if you don’t see errors in the load
testing tool it doesn’t always mean
that it works properly) and realism
(using unrealistic scenarios is the
easiest way to get misleading results).
Moreover, load generation is only one
step in load testing, there are many
other important parts (like getting
requirements and doing results
analysis), as well as other related
activities (like tuning or diagnostics).

Unfortunately, scripting can
be challenging even for a web
application. Recording a script and
making it work can be a serious
research task, often including many
try-and-fail iterations. A good load
testing tool can help if it supports
your protocol.

The protocol level record and
playback approach has several
serious limitations:

z It usually doesn’t work for
testing components and
services.

z Each particular load testing
tool supports a limited
number of technologies.

z Some technologies
require very time-
consuming correlation and
parameterization and some
may be not supported at all.

z The workload validity in case
of sophisticated logic on the
client side is not guaranteed.

These limitations are usually not
a problem in the case of simple web
applications using a browser as a
client, but they become a serious
problem when you need to test
different protocols across the whole
software lifecycle.

Each load testing tool supports
a limited number of technologies
(protocols). New or exotic
technologies are not usually on
the list. Vendors of load test tools
add new supported protocols
continually, but we often do not
have time to wait for the specific
protocol to be added – as soon as we
get a new product we need to test it.

For example, back in 1999, we
were not able to use recording for
the SMB (Server Message Block)
protocol, later succeeded by the

Common Internet File System
(CIFS) protocol, Microsoft DCOM
(Distributed Component Object
Model), or Java RMI (Remote
Method Invocation). While some
vendors claimed that their products
supported these protocols, it didn’t
work in all environments.

Later there were issues with Java
applets and ActiveX controls, which
used serialization, encoding, or even
proprietary protocols.

Today we are getting a new
generation of Rich Internet
Applications (RIA) and new
web protocols, bringing these
old challenges of protocol level
recording back – so some
authors started to talk about
a crisis of performance testing.
Still these issues don’t look any
more challenging than the
issues we had 10-15 years ago –
especially considering that many
still use underlying standard web
protocols, so we at least are able
to record the communication.

Even if the protocol is
supported, script recording and
parameterization often are far from
being straightforward and often
require a good knowledge of system
internals. The question of workload
validation is also opened.

So, it is possible that the record
and playback approach won’t work in
your environment, or that using the
approach will be too time-consuming
and inflexible (as it happened many
times for us). When such problems
are encountered, it is a good time
to check other alternatives and
add them to your arsenal.

Record and Playback: UI-Level
Another approach to simulating
user activities is to record user
interactions with Graphical User
Interface (GUI) – such as keystrokes
and mouse clicks - and then play
them back. Users, simulated
by using such approach, are
sometimes referred as GUI users.
The tools using this approach
simulate users in the most accurate
way: they take the place of a real
user. You are supposed to get end-
to-end response times identical to
what users would see.

bIrd’seye | vIeW

 | w w w . s o f t w a r e t e s t p r o . c o m10

Originally such tools were mostly used for automated
functional testing, although the option to use this
approach for load testing was available for a long time.
For load testing, these GUI tools were usually used in
conjunction with the load testing tool from the same
vendor, which coordinated execution of multiple GUI
scripts and collected results.

Fig.3 Record and Playback Approach, GUI Users

The main problem with such tools was that these
tools drive an instance of client software and require a
machine for each user, so it was almost impossible to
use them for a large number of simulated users – you
need the same number of physical boxes as the number
of users being simulated. Some tools have the ability
to run one user per Windows Terminal Server session
that significantly increases scalability of the solution
(probably up to low hundreds of users from a practical
point of view).

Another known option was, for example, using the
low-level graphical Citrix or Remote Desktop protocols
– which always were the last resort when nothing else
was working, but were notoriously tricky to playback.
It works fine when you indeed use Citrix or Remote
Desktop. But using it as a workaround means that you
test a significantly different setup than you use in real
life (with multiple clients parts running on a server) that
may undermine the value of testing.

Nowadays most applications have web-based interface
and a new generation of UI-level tools for browsers
extend possibilities of the UI-level approach allowing
to run multiple browsers per machine (so scalability
is limited by the machine resources available to run
browsers). Perhaps we can refer to users simulated by
such tools as browser users (because low-level browser
control is usually used).

Fig.4 Record and Playback Approach, Browser Users

Moreover, UI-less browsers were created, such as
HtmlUnit or PhantomJS, which require significantly less
resources than real browsers. This drastically increased
scalability of the UI-level approach and made it much
more viable for load testing now, but the approach still
remains less scalable than the protocol-level approach
just because all these browsers (even the light-weight
ones) still need to be run and all client-side application
code be executed on the load generator machine.

Using the UI-level approach for load testing sounds
very promising: we get end-user timing and do not
depend on intricacies of the client-server communication.
However, questions of supported technologies, scalability,
and timing accuracy remain largely undocumented, so
the approach requires evaluation in every non-trivial
case. So far the approach is mostly used to re-use
existing functional testing scripts or when it is impossible
to use protocol-level scripts.

Manual
Manual load generation isn’t a real option if we want to
simulate a large number of users. Still, in some cases,
it can be a good option when we need load from a few
users and don’t have proper tools available or face
serious issues with scripting. Sometimes a manual test
can be a good option in earlier stages of testing to verify
that the system can support concurrent work or to
diagnose, for example, locking problems.

One of the concerns with manual testing is that even
when each user has an exact scenario, time variations
can occur; so the tests are not exactly reproducible due
to variations in human input times. Such an approach
hardly can be recommended as a long term solution,
even with few users.

It still could be useful to run one or few users
manually in parallel to simulated virtual users’ workload
to better understand what real users would experience.
That is a good way to verify test results: if manual
response times match what you see for the scripts, it is
an indication that your scripts are correct.

Programming: Custom Test Harness
Programming is another approach to load generation.
A straightforward way to create a multi-user workload is
to develop a special program to generate workload. This
program requires access to the Application Programming
Interface (API) or source code and some programming
work. It is often used to test components. No special
testing tool is necessary (although some tools are
available that can simplify work).

In some simple cases it could be the best solution
(from a cost perspective, especially if there is no
purchased load testing tool). A starting version could
be quickly created by a programmer familiar with the
API. A simple test harness, for example, could spawn
several threads and each thread, simulating a real user,
could include the same sequence of API calls as the real
software for that use case. No need to worry about what
protocol is used for communication.

bIrd’seye | vIeW

V o l u m e 9 | I s s u e 6 11

We successfully used this approach for component load
testing in several projects (and, of course, this approach is
widely used by developers). However, efforts to update and
maintain the harness increase drastically as soon as you
need to add such features as, for example:

z Complex user scenarios

z Centralized test management and result analysis

z Coordinated test execution from several computers

If you have numerous products, you really need to
create something like a commercial load testing tool to
assure all necessary performance and reliability testing.
It probably isn’t the best choice for a small group of testers.

Programming: Using Load Testing Tools
Many advance load testing tools support one (or several)
scripting languages allowing you to program scripts
in whatever way is necessary while using the tool to
manage scripts executions, collect and analyze the
results. It may be direct programming of server requests,
using web services, or using API. If using API, the
approach may need lightweight custom software clients
(client stubs) to create the correct workload.

Fig 5. Programming API Using a Load Testing Tool.

The implementation of this approach (we called it
custom load generation) depends on the particular load
testing tool. The original way was to create an external
C dll (or shared library for UNIX) and then call functions
defined in the dll from the tool’s native script language.

Another way to implement this approach appeared in
the later versions of load testing tools: creating a script
in a programming language (such as Java or Visual
Basic) with the help of templates and special tool-
supplied functions.

These are significant advantages of this custom load
generation approach:

z It eliminates dependency on the third-party tool to
support specific protocols.

z It leverages all the features of existing load testing
tools and allows use of them as a test harness.

z It takes away the need to implement multi-user
support, data collection and analysis, reporting,
scheduling, etc. This is inherent in the third-party tool.

z It ensures that performance testing of current or
future applications can be done for any protocol
used to communicate among different tiers

bIrd’seye | vIeW

 | w w w . s o f t w a r e t e s t p r o . c o m12

Custom load generation may allow managing the
workload in a more user-friendly way by simplifying
parameterization.

For example, if you record socket-level traffic, recording
and parameterization could take a lot of time. And if
you need to change the workload (for example, use
new queries), it is almost impossible to change the
parameterized script to reflect the new workload. You
probably need to re-record and re-parameterize the script.

 When you implement custom load generation, the
real query could be read from an input file. Changing
the query becomes very easy: you just change the input
file without any changes in the script.

The same is true if different builds of the software
are tested. Small changes could impact a low-level
protocol script, but the API is usually more stable.
Just install the new build and run the test. There is
no new recording and parameterization needed.

But, of course, there are some considerations to keep
in mind for the custom load generation approach:

z It requires access to API or source code.

z It requires additional programming work.

z It requires an understanding of internals (to re-create
the sequence used by real users).

z The client environment should be set up on all load
generator machines.

z It requires commercial tool licenses for the necessary
number of virtual users.

z It usually requires more resources on client
machines (since there is some custom software).

z The results should be carefully interpreted (to insure
that there is no contention between client stubs).

Programming may be a better solution in many cases,
but it is not a full replacement of recording approaches.
In cases when recording works well, it usually provides
better and more efficient solutions. One of important
advantages of recording is that that the tool records
exactly whatever communication happens between user
and server – while with programming it is often what
the person creating scripts think the communication is.
Unfortunately communication between user and server
is often very complicated and difficult to reproduce
programmatically. So the tools that support only
programming and does not support recording have
a rather limited area of application.

Environments
There is always a lot of discussion on what test
environments should be. Most experts agree that
it should be as close to production as possible, but
what it exactly means and what to do when, due to
different limitations, it is impossible to have it similar to
production, is always a topic for discussions.

The cloud introduced new opportunities and
challenges to performance testing, but specific pros and
cons vary significantly depending on your environment

and goals. The term cloud is overused and covers a lot
of different options. If we want to understand how cloud
may impact performance testing, we should consider
all these options separately as they bring a completely
different performance testing context.

In performance testing we have two main components:
the system under test and load generators (we may
have other components for monitoring, results analysis,
etc., but they are not so important in the context of
this discussion).

When we talk about load generators, we have three
main options:

z Have them locally, the traditional option (for
example, in a test lab).

z Have them as a service. This option existed for a
long time (for example, load testing services provided
by Gomez, Keynote, and other companies). While
we can refer to it as a SaaS (Software as a Service)
cloud now, the only real change is that we have more
such companies (and, respectively, more choices)
because it is easier to start such service using cloud
to provide infrastructure.

z Have them in IaaS (Infrastructure as a Service)
clouds. This is a new option and it makes it easy to
get a large number of remote load generators. It was
always possible to have a load generator on a remote
machine, but now it is much easier to get it. Some
tools provide help with cloud deployments, which
may be very handy when you need a large number of
load generators for a large-scale test.

When we talk about the system under test, in addition
to having the system locally (which may be anything
from a development machine to the production system),
we may deploy it in a cloud now. It helps to overcome
one of the main reasons of not testing full-scale
setups, lack of hardware resources: now you can get
as much hardware as you want when you are ready for
that. However it may be not exactly the same kind of
hardware and software that you use in your production
system, so getting closer to the scale of the system you
may be farther away in details of the environment.

What configuration would be better for you depends
on what are the goals of performance testing.
Performance testing in the cloud (or from the cloud)
makes sense for certain types of performance testing.
For example, it should work great if we want to test how
many users the system supports, would it crash under
load of X users, or how many servers we need to support
Y users, but when we are not too concerned with exact
numbers or variability of results (or even want to see
some real-life variability).

 Even in this case the assumptions are that we don’t
introduce any bottleneck using the cloud (for example,
saturating network bandwidth between the load
generators and the system under test) and leave to the
cloud provider to care that our tests don’t impact other
cloud tenants.

bIrd’seye | vIeW

V o l u m e 9 | I s s u e 6 13

However it doesn’t work well for
performance optimization, when
we make a change in the system
and want to see how it impacts
performance. Testing in a cloud
with other tenants intrinsically has
some results variability as far as
we don’t control other activities in
the cloud and in most cases don’t
even know the exact hardware
configuration. The effects may be
even more sophisticated in case
of Platform as a Service (PaaS) or
SaaS clouds. So when we talk about
performance optimization, we may
still need an isolated environment.

One interesting case is when the
system is created to be used in a
cloud, which probably would be more
and more common with time. The first
thought would be that it simplifies the
choice, you just test it in the cloud
where it is supposed to be deployed.
Still it won’t work too well if you need
to do performance optimization or
troubleshooting and want tests to
be completely reproducible. In this
case you may need something like an
isolated private cloud with hardware
and software infrastructure similar
to the target cloud and monitoring
access to the underlying hardware to
see how the system maps to hardware
resources and if it works as expected.
Real-world network emulators may be
used to make sure that performance
testing is representative of how the
system would be used in production –
otherwise we don’t take into account
such factors as network latency,
bandwidth, jitter, etc. So if we need
optimization for cloud software, we
may still need a lab – but the lab
should be more sophisticated to
emulate the cloud environment and
real-world network conditions. An
ultimate example of such lab is the
lab Microsoft created for testing IE,
described at http://blogs.msdn.
com/b/b8/archive/2012/02/16/
internet-explorer-performance-
lab-reliably-measuring-browser-
performance.aspx.

Thus we have different options
for the system and load generator
deployments, and what option (or
combination of options) would be
the best depends on the goals of
performance testing. For example,

some typical performance testing
scenarios may be:

z System validation for high load.
Outside load (service or cloud)
against the production system
may be the best option here. We
have a wider scope of testing,
but lower repeatability.

z Performance optimization /
troubleshooting. An isolated
environment may be the best
option here. We have a limited
scope, but high repeatability.

z Testing in Cloud. It may be the
best option for periodic tests to
lower costs. We have a limited
scope and low repeatability.

So by factoring in the cloud into
performance testing, we have at least
two major alternatives (with a variety
of more subtle options): coarse
performance testing in or from
the cloud with inherent variability
(and probably some savings on
hardware and configuration costs)
or granular performance testing
and optimization in an isolated
environment (thus avoiding
variability with probably higher
hardware and configuration costs).
For comprehensive performance
testing you may even need both lab
testing (with reproducible results
for performance optimization) and
realistic outside testing from around
the globe (to check real-life issues
that you can’t simulate in the lab).
Doing both would be expensive and
makes sense only when performance
really matters – but if you are
not there yet, you may get
there eventually.

Automation
One of the main trends in software
development now is automation.
The whole DevOps trend is, in a
way, based on automation. And load
testing is trailing far behind here.
There are, of course, objective reasons
for that: it is just much more difficult
to automate than, for example,
functional testing: you usually need a
more sophisticated setup, have many
more factors that may impact tests,
and results are complex and difficult
to interpret as pass/fail.

bIrd’seye | vIeW

 | w w w . s o f t w a r e t e s t p r o . c o m14

While, of course, load testing is more difficult
to automate than other activities such as building
software, functional testing or deployment, it is not
impossible. It is surprising that tool vendors don’t
provide much functionality yet to support
such activities.

There were several good presentations sharing
experience of single-user performance test automation,
in some cases performance information was collected
in parallel to performance tests. It looks like a good
first step in the right direction, but the author hasn’t
heard yet about good examples of multi-user load test
automation. However, it is not something that can
be done without tools support – either they would be
created from a scratch, or existing tools would add
such functionality.

There is not much to discuss in this section now, but
we may see significant developments in that area in the
foreseeable future.

Selecting Load Testing Tools
Classifying and evaluating load testing tools is not
easy as they include different sets of vaguely defined
functionality, often over-embellished by vendors. In
most cases, available classifications are either an
oversimplification (which in some cases still may be
useful) or a marketing trick to highlight advantages
of specific tools. There are many criteria to use to
differentiate load testing tools and it is probably better
to evaluate tools on each criterion separately. While the
considerations below may look somewhat generic, the
author explicitly decided not to mention any specific
tool due to limited space and to prevent potential
vendor complaints.

Load Generation
As it was discussed in the Load Generation section,
there are three main approaches on how tools may
generate load and every tool may be evaluated on which
of them it supports and how it performs:

z Protocol-level recording and the list of
supported protocols

z UI-level recording

z Programming

Supported Environments
As was discussed in the Environments section, it is
important to understand what environments the tool is
supporting and how well. Depending on the goals of load
testing, you may need support of one or several types
of environments.

Whether it is lab or cloud, an important question is
what kind of software / hardware / cloud the tool
requires. Many tools use low-level system functionality,
so there may be unpleasant surprises when the platform
of your choice or your corporate browser standard is
not supported.

Scaling
When you have a few users to simulate, it usually is not
a problem. The more users you need to simulate, the
more important it becomes. Tools differ drastically on
how many resources they need per simulated user and
how well they may handle large volumes of information.
It may differ significantly even for a specific tool
depending on protocol used and specifics of your script.
As soon as you get to thousands of users, it may become
a major problem. For a very large number of users
some automation, like automatic creation of a specified
number of load generators across several clouds, may
be very handy. Load testing appliances can be useful
for simulating a large number of simple Web users, but
scripting is usually limited.

Monitoring and Result Analysis
These two very important sets of functionality are
often an indicator of how mature the tool is. While
theoretically it is possible to do both using other tools
(and it is usually suggested by the vendors who don’t
have such functionality built-in), it significantly degrades
productivity and may require building some plumbing
infrastructure. So while these two areas may look
optional, integrated and powerful monitoring and result
analysis are very important. And the more complex the
system and tests are, the more important they are.

Teamwork Support
Performance is mostly a team exercise and you would
need to share artifacts and results with other members
of the team. In some cases concurrent access to running
tests and result analysis may be needed. For licensed
tools, how licenses may be shared may have significant
financial consequences.

Automation Support
As discussed in the Automation section, while it is rarely
clearly spelled out and difficult to formalize, automation
support would probably become an important criterion
in the near future. Whatever features are needed, they
should be explicitly checked – many tools may lack even
very basic features like scheduling a test run.

Of course, non-technical criteria are important too:

Cost/Licensing Model
There are commercial tools (and license costs
differ drastically) and free tools. And there are some
choices in between when a limited edition is available for
free and the full version may be purchased. There are
many free tools (a few are mature and well-known) and
many inexpensive tools, but most of them are very limited
in functionality. Switching tools in the future is possible,
but has notable costs associated with it (efforts to make
the current tool work, the learning curve, re-doing jobs
already done with the old tool), so it makes sense to make
sure that the chosen tool(s) will support performance
engineering activities for the foreseeable future.

bIrd’seye | vIeW

V o l u m e 9 | I s s u e 6 15

Skills
Considering a large number of tools
and a relatively small number of
people working in the area, there
is a kind of labor market only for
the most popular tools. Even for
the second-tier tools there are few
people around and few positions
available. So if you don’t choose the
market leaders, you can’t be certain
that you will find people with this
tool experience. Of course, an
experienced performance engineer
will learn any tool – but it may take
some time until productivity gets to
the expected level.

Support
Recording and load generation
has a lot of sophistication in the
background and issues may happen
in every area. Availability of good
support may significantly improve
productivity.

This is, of course, not a
comprehensive list of criteria
– rather a few starting points.
Unfortunately, in most cases you
can’t just rank tools on the better/
worse scale. It may be that a
simple tool will work quite well in
your case. If your business is built

around a single web site, it doesn’t
use sophisticated technologies, and
load is not extremely high – almost
every tool will work for you. The
further you are from this state, the
more challenging it will be to pick
up the right tool. And it even may
be that you need several tools.

And while you may evaluate tools
with the above mentioned criteria, it
is not guaranteed that a specific tool
will work with your specific product
(unless it uses a well-known and
straightforward technology). That
actually means that if you have a
few systems to test, you need to
evaluate the tools you consider
using your systems and see if the
tools can handle them. If you have
many, choosing a tool supporting
multiple load generation options
is probably a good idea (and, of
course, check it with at least the
most important systems).

Summary
Load testing is an important way
to mitigate performance risks and
should be an integral part of the
system lifecycle. While we have
other ways to mitigate performance
risks, they can’t completely replace
load testing but rather complement

it. Maybe there would be less need
for simplistic load testing due to
better instrumenting, APM tools,
continuous integration, etc. – but
we may expect more need for
performance experts that would be
able to see the whole picture using
all available tools and techniques.

There is no best approach
to load generation, setting test
environments, test creating and
execution, plus, there is no best
load testing tool for every scenario.
Some approaches or tools may be
better in a particular context. It is
quite possible that a combination
of tools and approaches would be
necessary in complex environments.
Choosing the right strategy in load
testing may be a challenging task.
While digging deeply into details of
particular projects and tools may
be needed, it is good to see a bigger
picture of what approaches and
tools are available and what are
their advantages and disadvantages.

 About the Author

Alexander Podelko is Consulting Member of
Technical Staff at Oracle.

bIrd’seye | vIeW

STP Online Summits are online events that are delivered for three and
a half hours per day over three consecutive days. Attend all sessions,
interact with the presenters and network with your peers right from the
comfort of your home or office! If you can’t attend the live sessions –
don’t worry! – you will have access to all of the session recordings.

2013 STP Online SummiT Schedule

www.SOfTwareTeSTPrO.cOm/OnlineSummiT

Finding Defects:
Tips, Tools

& Techniques

MARCH
12 – 14, 2013

Test automation:
Anatomy, Architecture

& Approaches

MAY
14 – 16, 2013

Performance Testing:
Defining, Executing

& Interpreting

August
20 – 22, 2013

Mobile app Testing:
Scope, Environments

& Devices

NoveMbeR
12 – 14, 2013

