
Large-Scale Testing: Load
Generation

Alexander Podelko
alex.podelko@oracle.com

alexanderpodelko.com/blog

@apodelko

The Fourth International Workshop on Large-Scale Testing

(LT 2015)

February 1, 2015

About Me

• Have specialized in performance for the last 17 years

• Currently performance testing and optimization of
Hyperion products at Oracle

• Board director at CMG (http://cmg.org), organization
of performance and capacity professionals
– Next conference November 2-5, 2015 in San Antonio, TX

2

Disclaimer: The views expressed here are my personal views only and do not necessarily represent those of my

current or previous employers. All brands and trademarks mentioned are the property of their owners.

Load Testing
Process

Collect Requirements

Create Test Assets

Define Load

Run Tests

Analyze Results

Done

Modify System

Goals are met

Goals are not met

3

Challenges of LT

• How can we create load?

– Workload generation

• What load do we want to generate?

– Test design

4

Manual

• Not an option for a large number of users

• Always variation in human input times

• Can be a good option to simulate quickly a few
users

• Can be used with other methods to verify
correctness

5

Record and Playback: Protocol
Level

 Load Testing Tool

Virtual Users

Server Load Generator

Application

Network

6

Considerations

• Usually doesn't work for testing components

• Each tool support a limited number of
technologies (protocols)

• Some technologies are very time-consuming

• Workload validity in case of sophisticated logic
on the client side is not guaranteed

• Client-side timing is not included

7

Record and Playback: UI Level

8

Load Testing Tool

Virtual

 Users

Server Load Generator

Application

Network

Browsers

Different Approaches

• Traditional tools, fat clients
– Require a separate machine (or a terminal session) per

user

• Low-level graphical protocols
– Citrix, Remote Desktop

• Web tools, browser
– Require a separate browser instance

• Web tools, light-weight browser
– Require a separate light-weight browser instance
– For example, HtmlUnit or PhantomJS

9

Considerations

• Scalability

– Still require more resources

• Supported technologies

• Timing accuracy

• Playback accuracy

– For example, for HtmlUnit

10

Programming

Load Testing Tool App.

Virtual
Users

Server Load Generator

Application

Network

API

11

Considerations

• Requires programming / access to APIs

• Tool support

– Extensibility

– Language support

• May require more resources

• Environment may need to be set

12

Real Users

• Testing in production

– Full load

– Partial load (A/B testing, canary testing)

• You trade in the need to generate and validate
workload for a possibility of performance
issues and load variability

13

Considerations

• May make sense for the following conditions

– Potential issues have minimal impact on user
satisfaction and company image

– Easy rollback of the changes

– Homogenous workload and a way to control it

– Fully parallel and scalable architecture

14

Summary

• There is no best approach – it depends

– More of an art in non-trivial cases

• Does the taxonomy make sense?

– Any suggestions / corrections?

• Can load generation be more of an science?

15

Questions?
Alexander Podelko

alex.podelko@oracle.com

alexanderpodelko.com/blog

@apodelko

