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About Me 

• Have specialized in performance for the last 17 years  

• Currently performance testing and optimization of 
Hyperion products at Oracle 

• Board director at CMG (http://cmg.org), organization 
of performance and capacity professionals 
– Next conference November 2-5, 2015 in San Antonio, TX 
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Load Testing 
Process 

Collect Requirements 

Create Test Assets 

Define Load 

Run Tests 

Analyze Results 

Done 

Modify System 

Goals are met 

Goals are not met 
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Challenges of LT 

• How can we create load? 

– Workload generation 

 

• What load do we want to generate? 

– Test design 
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Manual 

• Not an option for a large number of users 

• Always variation in human input times 

• Can be a good option to simulate quickly a few 
users  

• Can be used with other methods to verify 
correctness  
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Record and Playback: Protocol 
Level 

  Load Testing Tool 

Virtual Users 

Server Load Generator 

Application 
 

Network 
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Considerations 

• Usually doesn't work for testing components 

• Each tool support a limited number of 
technologies (protocols) 

• Some technologies are very time-consuming 

• Workload validity in case of sophisticated logic 
on the client side is not guaranteed 

• Client-side timing is not included 
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Record and Playback: UI Level 
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Load Testing Tool 

Virtual 

 Users 

Server Load Generator 

Application 

 
Network 

 
Browsers 



Different Approaches 

• Traditional tools, fat clients 
– Require a separate machine (or a terminal session) per 

user 

• Low-level graphical protocols 
– Citrix, Remote Desktop 

• Web tools, browser 
– Require a separate browser instance  

• Web tools, light-weight browser 
– Require a separate light-weight browser instance 
– For example, HtmlUnit or PhantomJS 
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Considerations 

• Scalability  

– Still require more resources 

• Supported technologies 

• Timing accuracy 

• Playback accuracy 

– For example, for HtmlUnit 
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Programming 

Load Testing Tool      App. 

Virtual 
Users 

Server Load Generator 

Application 
 

Network 
 

API 
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Considerations 

• Requires programming / access to APIs 

• Tool support 

– Extensibility 

– Language support 

• May require more resources 

• Environment may need to be set  
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Real Users 

• Testing in production 

– Full load   

– Partial load (A/B testing, canary testing) 

• You trade in the need to generate and validate 
workload for a possibility of performance 
issues and load variability 
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Considerations 

• May make sense for the following conditions 

– Potential issues have minimal impact on user 
satisfaction and company image  

– Easy rollback of the changes  

– Homogenous workload and a way to control it  

– Fully parallel and scalable architecture  
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Summary 

• There is no best approach – it depends 

– More of an art in non-trivial cases 

 

• Does the taxonomy make sense? 

– Any suggestions / corrections? 

 

• Can load generation be more of an science? 
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Alexander Podelko 

alex.podelko@oracle.com 

alexanderpodelko.com/blog 

@apodelko 


