
1

At first glance, the subject “performance requirements” looks simple enough.
Almost every book or paper about performance has a few pages about
defining performance requirements. Quite often, a performance
requirements section can be found in project documentation. But, the more
you examine the area of performance requirements, the more questions and
issues arise. The goal of this presentation is not to answer all the questions,
but rather to discuss and evaluate the many aspects of this topic and to
provide different views and examples.

2

Defining performance requirements is an important part of system design
and development. If there are no written performance requirements, it means
that they exist in the heads of stakeholders, but nobody bothered to write
them down and make sure that everybody agrees on them. Exactly what is
specified may vary significantly depending on the system and environment,
but the final requirements should be quantitative and measurable.
Performance requirements are the main input for performance testing (where
they are verified) as well as capacity planning and production monitoring.

This presentation is not a tutorial, it is rather a discussion about important
points to ponder that are often missed when performance requirements are
discussed. First we discuss different performance metrics, then how we can
gather performance requirements and finally the issues related to verification
ofperformance requirements.

3

There are several classes of performance requirements. Most traditional are
response times (how fast the system can handle individual requests) and
throughput (how many requests the system can handle). All classes are vital:
Good throughput with long response times usually is unacceptable, as are
good response times with low throughput.

4

Response times (in the case of interactive w ork) or processing times (in the case of
batch jobs or scheduled activities) define how fast requests should be processed.
Acceptable response times should be defined in each particular case. A time of 30
minutes could be excellent for a big batch job, but absolutely unacceptable for
accessing a Web page in a customer portal. Response times depend on w orkload,
so it is necessary to define conditions under w hich specif ic response times should
be achieved; for example, a single user, average load or peak load.

Signif icant research has been done to define what the response time should be for
interactive systems, mainly from tw o points of view : w hat response time is
necessary to achieve optimal user’s performance (for tasks like entering orders)
and w hat response time is necessary to avoid Web site abandonment (for the
Internet). Most researchers agreed that for most interactive applications there is no
point in making the response time faster than one to two seconds, and it is helpful
to provide an indicator (like a progress bar) if it takes more than eight to 10
seconds.

Response times for each individual transaction vary, so we need to use some
aggregate values w hen specifying performance requirements, such as averages or
percentiles (for example, 90 percent of response times are less than X). Maximum /
timeout times should be provided also, if necessary.

For batch jobs, remember to specify all schedule-related information, including
frequency (how often the job w ill be run), time w indow , dependency on other jobs
and dependent jobs (and their respective time w indows to see how changes in one
job may impact others).

5

6

Throughput is the rate at which incoming requests are completed.
Throughput defines the load on the system and is measured in operations
per time period. It may be the number of transactions per second or the
number ofadjudicated claims per hour.

Defining throughput may be pretty straightforward for a system doing the
same type of business operations all the time like processing orders or
printing reports. Still additional metrics may be necessary in some cases,
such as the number of items in an order or the size of a report. It may be
more difficult for systems with complex workloads: The ratio of different
types of requests can change with the time and season.

It is also important to trace how throughput varies with time. For example,
throughput can be defined for a typical hour, peak hour, and non-peak hour
for each particular kind of load. In some cases, it may be helpful to further
detail what the load is hour-by-hour.

The number of users doesn’t, by itself, define throughput. Without defining
what each user is doing and how intensely (i.e. throughput for one user), the
number of users doesn’t make much sense as a measure of load. For
example, if 500 users are each running one short query each minute, we
have throughput of 30,000 queries per hour. If the same 500 users are
running the same queries, but only one query per hour, the throughput is 500
queries per hour. So there may be the same 500 users, but a 60X difference
between loads (and at least the same difference in hardware requirements
for the application – probably more, considering that not many systems
achieve linear scalability).

7

8

While some requirements are considered traditional and absolutely
necessary for some kind of systems and environments, they are often
missed or notelaborated enough for interactive distributed systems.

•Concurrency

•Resources

•Scalability

•Context

Concurrency is the number of simultaneous users or threads. It is important:
connected, but inactive users still hold some resources. For example, the
requirement may be to support up to 300 active users.

The terminology used to describe the number of users is somew hat vague. Usually
three metrics are used:

• Total or named users. All registered or potential users. This is a metric of data the
systemw orks w ith. It also indicates the upper potential limit of concurrency.

• Active or concurrent users. Users logged in at a specif ic moment of time. This
one is the real measure of concurrency in the sense it is used here.

• Really concurrent. Users actually running requests at the same time. While that
metric looks appealing and is used quite often, it is almost impossible to measure
and rather confusing: the number of "really concurrent" requests depends on the
processing time for this request. For example, let’s assume that w e got a
requirement to support up to 20 “concurrent” users. If one request takes 10 sec, 20
“concurrent” requests mean throughput of 120 requests per minute. But here w e get
an absurd situation that if w e improve processing time from 10 to one second and
keep the same throughput, w e miss our requirement because w e have only two
“concurrent” users. To support 20 “concurrent” users w ith a one-second response
time, w e really need to increase throughput 10 times to 1,200 requests per minute.

It is important to understand w hat users you are discussing: the difference betw een
each of these three metrics for some systems may be drastic. The number of online
users (the number of parallel session) looks like the best metric for concurrency
(complementing throughput and response time requirements). Finding the number
of concurrent users for a new system can be tricky, but information about real
usage of similar systems can help to make the first estimate.

9

10

The amount of available hardware resources is usually a variable at the
beginning of the design process. The main groups of resources are CPU,
I/O, memory,and network.

When resource requirements are measured as resource utilization, it is
related to a particular hardware configuration. It is a good metric when the
hardware the system will run on is known. Often such requirements are a
part of a generic policy; for example, that CPU utilization should be below 70
percent. Such requirements won’t be very useful if the system deploys on
different hardware configurations, and especially for Commercial Off-the-
Shelf (COTS) software.

In [Performance07] authors separate performance requirements / goals
(which they apply mainly to response times) from performance targets /
thresholds (which theyapplymainlyto resource utilization).

When specified in absolute values, like the number of instructions to execute
or the number of I/O per transaction (as sometimes used, for example, for
modeling), it may be considered as a performance metric of the software
itself, without binding it to a particular hardware configuration. In the
mainframe world, MIPS was often used as a metric for CPU consumption,
but I am not aware about such a widely used metric in the distributed
systems world.

The importance of resource-related requirements will increase again with the
trends of virtualization, cloud computing, and service-oriented architectures.
When you depart from the “server(s) per application” model, it becomes
difficult to specify requirements as resource utilization, as each application
will add only incrementally to resource utilization for each service used. And
indeed, looks like in the VMware world ‘CPU usage in MHz’ or usagemhz is
used.

11

12

Scalability is a system's ability to meet the performance requirements as the
demand increases (usually by adding hardware). Scalability requirements
may include demand projections such as an increasing number of users,
transaction volumes,data sizes,or adding new workloads.

From a performance requirements perspective, scalability means that you
should specify performance requirements not only for one configuration
point, but as a function, for example, of load or data. For example, the
requirement may be to support throughput increase from five to 10
transactions per second over next two years with response time degradation
notmore than 10 percent.

Most scalability requirements I have seen look like “to support throughput
increase from five to 10 transactions per second over next two years without
response time degradation”. Actually, except in a few very special cases,
increasing load leads to some response time degradation, so supporting
such requirement without any changes in the system is possible only with
addition ofhardware resources.

13

It is very difficult to consider performance (and, therefore, performance
requirements) without context. It depends, for example, on hardware
resources provided, the volume of data operated on, and functionality
included in the system. So if any of that information is known, it should be
specified in the requirements. Not everything may be specified at the same
point: while the volume of data to keep is usually determined by the business
and should be documented at the beginning, the hardware configuration may
be determined during the design stage.

14

Requirement Engineering / Architect’s vocabulary is very different from what
is used in performance testing / capacity planning. Performance and
scalability are examples of Quality Attributes (QA), part of Nonfunctional
Requirements (NFR).

In addition to specifying requirements in plain text, there are multiple
approaches to formalize documenting of requirements. For example, Quality
Attribute Scenarios by The Carnegie Mellon Software Engineering Institute
(SEI) or Planguage (Planning Language) introduced byTom Gilb.

15

QA scenario defines source, stimulus, environment, artifact, response, and
response measure [Bass03]. For example, the scenario may be “Users
initiate 1,000 transactions per minute stochastically under normal operations,
and these transactions are processed with an average latency of two
seconds.“ For this example:

•Source is a collection of users.

•Stimulus is the stochastic initiation of1,000 transactions per minute.

•Artifact is always the system's services.

•Environment is the system state,normal mode in our example.

•Response is processing the transactions.

•Response measure is the time it takes to process the arriving events (an
average latency of two seconds in our example).

16

Planguage (Planning language) was suggested by Tom Gilb and may work
better for quantifying quality requirements [Simmons01]. Planguage
keywords include:

•Tag:a unique identifier

•Gist: a short description

•Stakeholder: a party materiallyaffected by the requirement

•Scale: the scale ofmeasure used to quantifythe statement

•Meter: the process or device used to establish location on a Scale

•Must: the minimum level required to avoid failure

•Plan: the level at which good success can be claimed

•Stretch: a stretch goal if everything goes perfectly

•Wish: a desirable level of achievement that may not be attainable through
available means

•Past: an expression ofprevious results for comparison

•Trend:an historical range or extrapolation of data

•Record: the best-known achievement

It is very interesting that Planguage defines four levels for each requirement:
minimum,plan, stretch,and wish.

17

18

One often missed issue, as Scott Barber notes, is goals versus requirements
[Barber07]. Most of response time “requirements” (and sometimes other
kinds of performance requirements,) are goals, not requirements: something
that we want to achieve, but missing them won’t necessarily prevent
deploying the system.

In many cases, especially for response times, there is a big difference
between goals and requirements (the point when stakeholders agree that the
system can’t go into production with such performance). For many
interactive web applications, response time goals are two to five seconds
and requirements may be somewhere between eight seconds and one
minute.

One approach may be to define both goals and requirements. The problem
is that, except when coming from legal or contractual obligation,
requirements are very difficult to get. Even if stakeholders define
performance requirements, quite often, when it comes to go/no go decisions,
it becomes clear that it was not the real requirements, but rather second-tier
goals.

In addition, multiple performance metrics only together provide the full
picture. For example, you may have a 10-second requirement and you get
15-second response time under the full load. But what if you know that this
full load is the high load on the busiest day of year, that response times for
the maximal load for other days are below 10 second, and you see that it is
CPU-constrained and may be fixed by a hardware upgrade? Real response
time requirements are so environment- and business-dependent that for
many applications it may be problematic to force people to make hard
decisions in advance for each possible combination of circumstances. One
approach may be to specify goals (making sure that they make sense) and
only then, if they are not met, make the decision what to do with all the
information available.

19

20

Another question is how to specify response time requirements or goals.
Individual transaction response times vary, so aggregate values should be
used. For example, such metrics as average, maximum, different kinds of
percentiles, or median. The problem is that whatever aggregate value you
use, you lose some information.

Percentiles are more typical in SLAs (Service Level Agreements). For
example, "99.5 percent of all transactions should have a response time less
than five seconds". While that may be sufficient for most systems, it doesn’t
answer all questions. What happens with the remaining 0.5 percent? Do
these 0.5 percent of transactions finish in six to seven seconds or do all of
them timeout? You may need to specify a combination of requirements: for
example, 80 percent below four seconds, 99.5 percent below six seconds,
and 99.9 percent below 15 seconds (especially if we know that the difference
in performance is defined by distribution of underlying data). Other examples
may be average four seconds and maximal 12 seconds, or average four
seconds and 99 percentbelow 10 seconds.

21

As Adrian Cockcroft noted about observability [Cockcroft00], in addition to
losing information when you aggregate, there are different viewpoints for
performance data that need to be provided for different audiences. You need
different metrics for management, engineering, operations, and quality
assurance. For operations and management percentiles may work best. If
you do performance tuning and want to compare two different runs, average
may be a better metric to see the trend. For design and development you
may need to provide more detailed metrics; for example, if the order
processing time depends on the number of items in the order, it may be
separate response time metrics for one to two, three to 10, 10 to 50, and
more than 50 items.

Moreover, the tools providing performance information for different
audiences are usually different, present information in a different way, and
may measure different things. For example, load testing tools and active
monitoring tools provide metrics for the used synthetic workload that may
differ significantly from the actual production load. This becomes a real issue
if you want to implement some kind of process, such as Six Sigma, to keep
performance under control throughout the whole system lifecycle.

22

Things get more complicated when there are many different types of
transactions, but a combination of percentile-based performance and
availability metrics usually works in production for most interactive systems.
While more sophisticated metrics may be necessary for some systems, in
most cases they make the process overcomplicated and results difficult to
analyze.

There are efforts to make an objective user satisfaction metric. For example,
Apdex - Application Performance Index. Apdex is a single metric of user
satisfaction with the performance of enterprise applications. The Apdex
metric is a number between 0 and 1, where 0 means that no users were
satisfied, and 1 means all users were satisfied. The approach introduces
three groups of users: satisfied, tolerating, and frustrated. Two major
parameters are introduced: threshold response times between satisfied and
tolerating users T, and between tolerating and frustrated users F [Apdex,
Sevcik08]. There probably is a relationship between T and the response time
goal, and between F and the response time requirement. However, while
Apdex is a good metric for management and operations, it may be too high-
level for engineering.

23

24

If we look at performance requirements from another point of view, we can
classifythem into business,usability, and technological requirements.

Business requirements come directly from the business and may be
captured very early in the project lifecycle, before design starts. For
example, "a customer representative should enter 20 requests per hour and
the system should support up to 1000 customer representatives". If
translated into more technical terms, requests should be processed in five
minutes on average, throughput would be up to 20,000 requests per hour,
and there could be up to 1,000 parallel sessions.

The main trap here is to immediately link business requirements to a specific
design, technology, or usability requirements, thus limiting the number of
available design choices. If we consider a Web system, for example, it is
probably possible to squeeze all the information into a single page or have a
sequence of two dozen screens. All information can be saved at once or
each page of these two-dozen can be saved separately. We have the same
business requirements, but response times per page and the number of
pages per hour would be different.

25

While the final requirements should be quantitative and measurable, it is not
an absolute requirement for initial requirements. Scott Barber, for example,
advocates that we need to gather qualitative requirements first [Barber07].
While business people know what the system should do and may provide
some numeric information, they are not trained in requirement elaboration
and system design. If asked to provide quantitative and measurable
requirements, they finally provide them based on whatever assumptions they
have about system's design and human-computer interaction, but quite often
this results in wrong assumptions being documented as business
requirements. We need to document real business requirements in the form
they are available, and only then elaborate them into quantitative and
measurable.

26

Usability requirements, mainly related to response times, are based on the
basic principles of human-computer interaction. Many researchers agree that
users lose focus if response times are more than eight to 10 seconds and
that response times should be two to five seconds for maximum productivity.
These usability considerations may influence design choices (such as using
several Web pages instead of one). In some cases, usability requirements
are linked closely to business requirements; for example, make sure that
your system's response times are not worse than response times of similar
or competitor systems.

27

28

As long ago as 1968, Robert Miller's paper "Response Time in Man-
Computer Conversational Transactions" described three threshold levels of
human attention [Miller68]. Jakob Nielsen believes that Miller’s guidelines
are fundamental for human-computer interaction, so they are still valid and
not likely to change with whatever technology comes next [Nielsen94].
These three thresholds are:

•Users view response time as instantaneous (0.1-0.2 second)

•Users feel theyare interacting freely with the information (1-5 seconds)

•Users are focused on the dialog (5-10 seconds)

29

Users view response time as instantaneous (0.1-0.2 second): Users feel that
they directly manipulate objects in the user interface. For example, the time
from the moment the user selects a column in a table until that column
highlights or the time between typing a symbol and its appearance on the
screen. Robert Miller reported that threshold as 0.1 seconds. According to
Peter Bickford 0.2 second forms the mental boundary between events that
seem to happen together and those that appear as echoes of each other
[Bickford97].

Although it is a quite important threshold, it is often beyond the reach of
application developers. That kind of interaction is provided by operating
system, browser, or interface libraries, and usually happens on the client
side, without interaction with servers (except for dumb terminals, that is
rather an exception for business systems today).

30

Users feel they are interacting freely with the information (1-5 seconds):
They notice the delay, but feel the computer is "working" on the command.
The user's flow of thought stays uninterrupted. Robert Miller reported this
threshold as one-two seconds [Miller68].

Peter Sevcik identified two key factors impacting this threshold [Sevcik03]:
the number of elements viewed and the repetitiveness of the task. The
number of elements viewed is, for example, the number of items, fields, or
paragraphs the user looks at. The amount of time the user is willing to wait
appears to be a function of the perceived complexity of the request. The
complexity of the user interface and the number of elements on the screen
both impact thresholds. Back in 1960s through 1980s the terminal interface
was rather simple and a typical task was data entry, often one element at a
time. So most earlier researchers reported that one to two seconds was the
threshold to keep maximal productivity. Modern complex user interfaces with
many elements may have higher response times without adversely
impacting user productivity. Users also interact with applications at a certain
pace depending on how repetitive each task is. Some are highly repetitive;
others require the user to think and make choices before proceeding to the
next screen. The more repetitive the task, the better expected response
time.

That is the threshold that gives us response time usability goals for most
user-interactive applications. Response times above this threshold degrade
productivity. Exact numbers depend on many difficult-to-formalize factors,
such as the number and types of elements viewed or repetitiveness of the
task, but a goal of three to five seconds is reasonable for most typical
business applications.

31

Users are focused on the dialog (5-10 seconds): They keep their attention on
the task. Robert Miller reported that threshold as 10 seconds [Miller68].
Users will probably need to reorient themselves when they return to the task
after a delay above this threshold, so productivity suffers.

Peter Bickford investigated user reactions when, after 27 almost
instantaneous responses, there was a two-minute wait loop for the 28th time
for the same operation. It took only 8.5 seconds for half the subjects to either
walk out or hit the reboot [Bickford97]. Switching to a watch cursor during the
wait delayed the subject's departure for about 20 seconds. An animated
watch cursor was good for more than a minute, and a progress bar kept
users waiting until the end. Bickford's results were widely used for setting
response times requirements for Web applications.

In another research [Bouch00] users were presented with Web pages that
had predetermined delays from two to 73 seconds. While performing the
task, users rated the latency for each page they accessed as high, average
or poor. The team reported the following ratings: good - up to 5 seconds,
average - from 6 to 10 seconds,poor - more than 10 seconds.

That is the threshold that gives us response time usability requirements for
most user-interactive applications. Response times above this threshold
cause users to lose focus and lead to frustration. Exact numbers vary
significantly depending on the interface used, but it looks like response times
should not be more than eight to 10 seconds in most cases. Still, the
threshold shouldn’t be applied blindly; in many cases, significantly higher
response times may be acceptable when appropriate user interface is
implemented to alleviate the problem.

The third category, technological requirements, comes from chosen design
and used technology. Some of technological requirements may be known
from the beginning if some design elements are given, but others are derived
from business and usability requirements throughout the design process and
depend on the chosen design.

For example, if we need to call ten Web services sequentially to show the
Web page with a three-second response time, the sum of response times of
each Web service, the time to create the Web page, transfer it through the
network and render it in a browser should be below 3 second. That may be
translated into response time requirements of 200-250 milliseconds for each
Web service. The more we know, the more accurately we can apportion
overall response time to Web services.

Another example of technological requirements is resource consumption
requirements. For example, CPU and memory utilization should be below
70% for the chosen hardware configuration.

32

Business requirements should be elaborated during design and
development, and merge together with usability and technological
requirements into the final performance requirements, which can be verified
during testing and monitored in production. The main reason why we
separate these categories is to understand where the requirement comes
from: is it a fundamental business requirement and the system fails if we
miss it or a result of a design decision thatmaybe changed if necessary.

Performance requirements are important input for Software Performance
Engineering [Smith02]. During design and development the requirements are
further elaborated. For example, the service / stored procedure response
time requirements should be determined by its share in the end-to-end
performance budget. In this way, the worst possible combination of all
required services, middleware and presentation layer overheads will provide
the required time. For example, if there is a Web page with 10 drop-down
boxes calling 10 separate services, the response time objective for each
service may be 0.2 seconds to get three seconds average response time
(leaving one second for network,presentation,and rendering).

33

Determining what specific performance requirements is another large topic
that is difficult to formalize. Consider the approach suggested by Peter
Sevcik for finding T, the threshold between satisfied and tolerating users. T is
the main parameter of the Apdex (Application Performance Index)
methodology, providing a single metric of user satisfaction with the
performance of enterprise applications. Peter Sevcik defined ten different
methods [Sevcik08].

34

•Default value (the Apdex methodology suggest 4 sec)

•Empirical data

•User behavior model (number of elements viewed / task repetitiveness)

•Outside references

•Observing the user

35

•Controlled performance experiment

•Best time multiple

•Find frustration threshold F first and calculate T from F (the Apdex
methodology assumes that F = 4T)

•Interview stakeholders

•Mathematical inflection point.

Each method is discussed in details in [Sevcik08].

36

The idea is use of several (say, three) of these methods for the same
system. If all come to approximately the same number, they give us T. While
the approach was developed for production monitoring, there is definitely a
strong correlation between T and the response time goal (having all users
satisfied sounds a pretty good goal), and between F and the response time
requirement. So the approach probably can be used for getting response
time requirements with minimal modifications. While some specific
assumptions like four seconds for default or the F=4T relationship may be up
for argument, the approach itself conveys the important message that there
are many ways to determine a specific performance requirement and it
would be better to get it from several sources for validation purposes.
Depending on your system, you can determine which methods from the
above list (or maybe some others) are applicable, calculate the metrics and
determine your requirements.

37

38

Requirement verification presents another subtle issue: how to differentiate
performance issues from functional bugs exposed under load. Often,
additional investigation is required before you can determine the cause of
your observed results. Small anomalies from expected behavior are often
signs of bigger problems, and you should at least figure out why you get
them.

When 99 percent of your response times are three to five seconds (with the
requirement of five seconds) and 1 percent of your response times are five
to eight seconds it usually is not a problem. But it probably should be
investigated if this 1 percent fail or have strangely high response times (for
example, more than 30 sec) in an unrestricted, isolated test environment.
This is not due to some kind of artificial requirement, but is an indication of
an anomaly in system behavior or test configuration. This situation often is
analyzed from a requirements point of view, but it shouldn't be, at least until
the reasons for that behavior become clear.

39

40

These two situations look similar, butare completelydifferent in nature:
1) The system is missing a requirement, but results are consistent: this is a
business decision, such as a cost vs. response time trade off.

2) Results are not consistent (while requirements can even be met): that
mayindicate a problem,but its scale isn't clear until investigated.

Unfortunately, this view is rarely shared by development teams too eager to
finish the project, move it into production, and move on to the next project.
Most developers are not very excited by the prospect of debugging code for

small memory leaks or hunting for a rare error that is difficult to reproduce.
So the development team becomes very creative in finding "explanations".

For example, growing memory and periodic long-running transactions in
Java are often explained as a garbage collection issue. That is false in most
cases. Even in the few cases when it is true, it makes sense to tune garbage

collection and prove that the problem wentaway.
Another typical situation is getting some transactions failed during

performance testing. It may still satisfy performance requirements, which, for
example, state that 99% of transactions should be below X seconds – and
the share of failed transaction is less than 1 percent. While this requirement

definitely makes sense in production where we may have network and
hardware failures, it is not clear why we get failed transactions during the

performance test if it was run in a controlled environment and no system
failures were observed. It may be a bug exposed under load or a functional
problem for some combination ofdata.

When some transactions fail under load or have very long response times in
the controlled environment and we don't know why, we have one or more
problems. When we have unknown problems, why not trace it down and fix
in the controlled environment? It would be much more difficult in production.
What if these few failed transactions are a view page for your largest
customer, and you won't be able to create any order for this customer until
the problem is fixed? In functional testing, as soon as you find a problem,
you usually can figure out how serious it is. This is not the case for
performance testing: usually you have no idea what caused the observed
symptoms and how serious it is, and quite often the original explanations
turn out to be wrong.

Michael Bolton described this situation concisely[Bolton06]:

As Richard Feynman said in his appendix to the Rogers Commission Report
on the Challenger space shuttle accident, when something is not what the
design expected, it's a warning that something is wrong. "The equipment is
not operating as expected, and therefore there is a danger that it can
operate with even wider deviations in this unexpected and not thoroughly
understood way. The fact that this danger did not lead to a catastrophe
before is no guarantee that it will not the next time, unless it is completely
understood." When a system is in an unpredicted state, it's also in an
unpredictable state.

41

42

We need to specify performance requirements at the beginning of any
project for design and development (and, of course, reuse them during
performance testing and production monitoring). While performance
requirements are often not perfect, forcing stakeholders just to think about
performance increases the chances ofproject success.

What exactly should be specified – goal vs. requirements (or both), average
vs. percentile vs. APDEX, etc. – depends on the system and environment.
Whatever it is, it should be something quantitative and measurable in the
end. Making requirements too complicated may hurt. We need to find
meaningful goals / requirements, not invent something just to satisfy a
bureaucratic process.

If we define a performance goal as a point of reference, we can use it
throughout the whole development cycle and testing process and track our
progress from the performance engineering point of view. Tracing this metric
in production will give us valuable feedback that can be used for future
system releases.

References

[Apdex] Apdex Web site

http://www.apdex.org/

[Barber07] Barber, S. Get performance requirements right - think like a user, Compuware white paper, 2007.

http://www.perftestplus.com/resources/requirements_with_compuware.pdf

[Bass03] Bass L., Clements P., Kazman R. Software Architecture in Practice, Addison-Wesley, 2003.

http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition

[Bickford97] Bickford P. Worth the Wait? Human Interface Online, View Source, 10/1997.

http://web.archive.org/web/20040913083444/http://developer.netscape.com/viewsource/bickford_wait.htm

[Bolton06] Bolton M. More Stress, Less Distress, Better Software, November 2006.

http://www.stickyminds.com/sitewide.asp?ObjectId=11536&Function=edetail&ObjectType=ART

[Bouch00] Bouch, A., Kuchinsky, A. and Bhatti, N. Quality is in the eye of the beholder: Meeting users ' requirements for Internet quality of service, CHI 2000, 297-304.

http://research.hp.com/personal/Nina_Bhatti/papers/chi.pdf

[Cockcroft00] Cockcroft, A., Walker B. Capacity Planning for Internet Services. Quick planning techniques for high growth rates.Sun Microsystems, 2000.

http://java.coe.psu.ac.th/SunDocuments/SunBluePrints/caphi.pdf

[Miler68] Miller, R. B. Response time in user-system conversational transactions, In Proceedings of the AFIPS Fall Joint Computer Conference, 33, 1968, 267-277.

[Loosley05] Loosley C. When Is Your Web Site Fast Enough? E-Commerce Times, 2005.

http://www.ecommercetimes.com/story/46627.html

[Martin86] Martin, G.L. and Corl, K.G. System response time effects on user productiv ity, Behavior and Information Technology, 5(1), 1986, 3-13.

[Nielsen94] Nielsen J. Response Times: The Three Important Limits, Excerpt from Chapter 5 of Usability Engineering, 1994.

http://www.useit.com/papers/responsetime.html

[Performance07] Performance Testing Guidance for Web Applications, 2007.

http://perftestingguide.codeplex.com/releases/view/6690

[Podelko07] Podelko A. Multiple Dimensions of Performance Requirements, CMG, 2007.

http://www.alexanderpodelko.com/docs/Performance_Requirements_CMG07.pdf

[Sevcik03] Sevcik, P. How Fast Is Fast Enough, Business Communications Review, March 2003, 8–9.

http://www.bcr.com/architecture/network_forecasts%10sevcik/how_fast_is_fast_enough?_20030315225.htm

[Sevcik08] Sevcik, P. Using Apdex to Manage Performance, CMG, 2008.

http://www.apdex.org/documents/Session318.0Sevcik.pdf

[Simmons01] Simmons E. Quantify ing Quality Requirements Using Planguage, Quality Week, 2001.

http://www.clearspecs.com/downloads/ClearSpecs20V01_Quantify ing%20Quality%20Requirements.pdf

[Smith02] Smith C., Williams L. “Performance Solutions”, Addison-Wesley, 2002.

43

