
Performance is a critical factor for success of any packaged application

1

implementations. The presentation discusses performance assurance for

packaged applications on example of Oracle Enterprise Performance

Management. While details are related to this particular set of applications,

many approaches discussed would be applicable to most packaged

applications. The presentation will discuss a holistic performance assurance

approach, top-down approach to performance troubleshooting, potential

performance issues and ways to address them.

2

Oracle Enterprise Performance Management (EPM) System includes a suite

of performance management applications, a suite of business intelligence

(BI) applications, a common foundation of BI tools and services, and a

variety of datasources – all integrated using Oracle Fusion Middleware.

3

4

Performance Assurance for EPM is ongoing performance risk mitigation

during the whole system lifecycle. EPM products are thoroughly tested for

performance, but performance of specific implementations depends on how

they are designed and constructed (metadata, data, forms, grids, rules, etc.-

all these artifacts are different for each implementation).

5

The steps listed are just an outline, some steps will be discussed in more

details later in this presentation.

6

The main point that all these activities should continue through the whole

system lifecycle and the same performance metrics should be tracked

through all steps.

7

Performance requirements are supposed to be tracked from the system

inception through the whole system lifecycle including design, development,

testing, operations, and maintenance. However different groups of people

are involved on each stage using their own vision, terminology, metrics, and

tools that makes the subject confusing when going into details.

Throughput is the rate at which incoming requests are completed.

Throughput defines the load on the system and is measured in operations

per time period. It may be the number of transactions per second or the

number of reports per hour. In most cases we are interested in a steady

mode when the number of incoming requests would be equal to the number

of processed requests.

The number of users doesn’t, by itself, define throughput. Without defining

what each user is doing and how intensely (i.e. throughput for one user), the

number of users doesn’t make much sense as a measure of load. What

users do also defines what components and how intensely they use.

8

For example, both very deep member hierarchies and flat member

hierarchies may cause issues under load.

See documentation and best practices documents for details for specific

applications.

9

Very large objects (web forms, reports) may require some tuning, like

increasing JVM heap size, even for one user.

Hardware upgrade (with exception of cpu speed) is usually not beneficial for

single-user issues– assuming that there is no inherent issues with hardware

configuration like memory is so small that it starts paging even with one user.

10

Multiple tuning documents are available and should be checked for details.

For example:

Essbase Database Administrator Guide, Optimizing Essbase

Hyperion Financial Management (HFM) Performance Tuning Guide, Fusion

Edition (Doc ID 1083460.1)

11

In cases of any long-running, resources-consuming tasks it may be more

efficient just to schedule them for the time of minimal load instead of trying to

tune and optimize them to run in parallel with high-concurrency load.

12

It is impossible to predict performance of your application without at least

some performance testing.

13

Running multiple users hitting the same set of data (with same Point of View,

POV) is an easy way to get misleading results. If it is for reporting, the data

could be completely cached and we get much better results than in

production. If it is, for example, for web data entry forms, it could cause

concurrency issues and we get much worse results than in production. So

scripts should be parameterized (fixed or recorded data should be replaced

with values from a list of possible choices) so that each user uses a proper

set of data. The term “proper” here means different enough to avoid

problems with caching and concurrency, which is specific for the system,

data, and test requirements.

14

Unfortunately, a lack of error messages during a load test does not mean

that the system worked correctly. A very important part of load testing is

workload verification. We should be sure that the applied workload is doing

what it is supposed to do and that all errors are caught and logged. It can be

done directly by analyzing server responses or, in cases when this is

impossible, indirectly. For example, by analyzing the application log or

database for the existence of particular entries.

15

The suggested “typical” configuration are for average applications designed

according to best practices. As far as performance heavily depends on the

way applications are implemented, it is difficult to properly size applications

that are unique in one or more ways (and many are) without collecting at

least some performance information.

16

17

Investigate before act. “Shooting in the dark” rarely helps, but adds

frustration.

18

It may be many reasons for bad performance, including lack of hardware

resources, inadequate tuning or configuration, issues with custom

application design, or even an issue with the product itself (which is relatively

slow). And, of course, it may be a combination of issues.

19

One complication may be that it could be several performance issues

disguising each other. It makes investigation more difficult, but still there is

no other way as identify and fix every issues one by one. No magic bullets

here.

20

Monitoring may be done with OS-level tools (such as Performance Monitor

for Windows and vmstat, ps, sar for UNIX), although it is usually nor the best

choice for ongoing production monitoring.

Things to monitor: system-level resource utilization metrics, process-level

metrics for key processes, database metrics.

21

Understanding what component is doing what is very important. During

performance testing, for example, you need to know what components you

need to pay attention to. And, vise versa, seeing activity on a component

during monitoring, you may guess what kind of workload may cause this

activity.

22

It doesn’t mean that other components never had performance issues – it

just mean that they are used mostly by few users or for one-time kinds of

activities, usually with low concurrency. Due to the time limitation, only the

most high-concurrency products and paths are discussed. The presentation

mainly discusses the products typically having the highest concurrency in

most EPM implementations: Hyperion Planning, Hyperion Financial

Management, Hyperion Essbase, and reporting solutions (Hyperion

Financial Reporting and Hyperion SmartView). Actually a detailed discussion

even about a single product hardly may fit a single presentation timeframe,

so here these products are mentioned rather as examples to illustrate the

advocated approaches. Further details could be found in manuals and

product-specific documents.

More information in the Component Architecture documents at

http://www.oracle.com/technetwork/middleware/bi-foundation/resource-

library-090986.html

23

This is a simplified HFM component diagram for the components and flows

usually involved in high-concurrency transactions. The components needed

most attention from the performance point of view highlighted with yellow

and red glow.

The choice of components / highlighting is based on the author personal

experience only and was simplified to fit presentation slides. Other

components may be important from performance point of view too.

OHS stands for Oracle HTTP Server.

*Foundation consisted of two components, Shared Services and Workspace,

before version 11.1.2.

24

The main components for Planning from the performance point of view are

Planning Web application (a J2EE application) and Essbase as its main

datastore. Relational Database is used mostly as the repository, so usually is

not a bottleneck.

25

The main components here from the performance point of view are Financial

Reporting Web application and data sources.

To illustrate the importance of request flow understanding: Financial

Reporting Print server is used only for pdf printing. So it is one of the most

important components to monitor if pdf printing is involved and completely

irrelevant if there is no pdf printing.

*There were three components (Financial Reporting Web applications

server, Reports Server and Scheduler Server – last two standalone Java

applications) instead of single Financial Reporting Web applications server

before version 11.1.2.

26

Each component may be mapped to one or several system processes. Most

Web applications are represented by HyS9<name> processes on Windows

and Java proceses on *unix. Use ps –ef| grep <name> on *unix to find PID

for specific component.

Key processes for HFM applications server are HsvDataSource and for

Essbase - ESSSVR. One such process is spawn per application, so it may

be multiple such processes (while orchestrating HsxServer and ESSBASE

processes respectively usually don’t use much resources). Key process for

HFM Web server is w3wp.

A combination of all artifacts, including metadata, data, forms, rules, etc. is

traditionally referred in EPM as an application. It creates some terminological

confusion: the product itself may be referred to as an application and one

specific implementation inside such product is referred as an application.

Talking about performance assurance in this presentation we usually mean

an implementation for the given product.

27

Essbase application logs provides timing for all transactions. Look for

‘Elapsed Time’ records.

28

Started and ended times for many HFM tasks may be found in Task Audit

(data retrieval only for Financial Reporting) in most convenient form. In the

logs it would be separate records for starting and for ending tasks.

29

The more issue would be investigated and narrowed down, the more

chances that support would be able to help.

30

31

Many issues have a very recognizable pattern and happen often enough to

be aware about them.

32

Verify that adding hardware will solve the problem. For example, if the

server is maxed out with 150 users and you need to support 200 users,

there is a good chance that adding a second server will solve the problem

(to be sure it need to be tested). However, if the server is maxed out with

10 users and you need to support 200 users, it is better to re-visit design

and tuning; adding hardware doesn’t look like a good option.

33

Dynamic members is an example of issues that can’t be found without multi-

user workload. It may be fine with one user and expose itself only under

concurrent load.

34

To investigate JVM memory issues in most cases you need to monitor actual

heap size (that usually require additional tools, some comes with Application

Servers). In some cases Java process memory may be monitored if initial –

Xms and maximum –Xmx heap size set to different values, but results may

be obscured by the way OS manage memory.

35

RAID-5 is optimized for reading, not writing. It introduces significant

36

overheads for extensive writing.

HTTP compression adds overheads, so it may be not a good solution for

LAN users.

37

What each request is doing is defined by the ?Action= part. In some

context/versions, during the recording, you get multiple

GETCONSOLSTATUS requests, the number of GETCONSOLSTATUS

requests recorded depends on the processing time. If playback such script, it

will work in the following way: the script submits the consolidation in the

EXECUTE request and then calls GETCONSOLSTATUS three times. If we

have a timer around these requests, the response time will be almost

instantaneous. While in reality the consolidation may take many minutes or

even hours (yes, this is a good example when sometimes people may be

happy having one hour response time in a Web application). If we have

several iterations in the script, we will submit several consolidations, which

continue to work in background competing for the same data, while we

report sub-second response times.

Consolidation scripts require creating an explicit loop around

GETCONSOLSTATUS to catch the end of consolidation.

38

Another example is HFM Web Data Entry Forms. To parameterize such

script, we need not only department names, but also department ids (which

are internal representation not visible to users – should be extracted from the

metadata repository). If department ids are not parameterized, the script

won’t work – although no errors will be reported.

39

40

