

The **Computer Measurement Group**, commonly called **CMG**, is a not for profit, worldwide organization of data processing professionals committed to the measurement and management of computer systems. CMG members are primarily concerned with performance evaluation of existing systems to maximize performance (eg. response time, throughput, etc.) and with capacity management where planned enhancements to existing systems or the design of new systems are evaluated to find the necessary resources required to provide adequate performance at a reasonable cost.

This paper was originally published in the Proceedings of the Computer Measurement Group's 2008 International Conference.

For more information on CMG please visit http://www.cmg.org

Copyright 2008 by The Computer Measurement Group, Inc. All Rights Reserved

Published by The Computer Measurement Group, Inc., a non-profit Illinois membership corporation. Permission to reprint in whole or in any part may be granted for educational and scientific purposes upon written application to the Editor, CMG Headquarters, 151 Fries Mill Road, Suite 104, Turnersville, NJ 08012. Permission is hereby granted to CMG members to reproduce this publication in whole or in part solely for internal distribution with the member's organization provided the copyright notice above is set forth in full text on the title page of each item reproduced. The ideas and concepts set forth in this publication are solely those of the respective authors, and not of CMG, and CMG does not endorse, guarantee or otherwise certify any such ideas or concepts in any application or usage. Printed in the United States of America.

- Multi-tiered enterprise applications (MTA) feature complex architecture with server farms on web, application, and database layers. Permanent growth of a number of users, volume of operational and financial data, as well as complexity of business transactions requires MTA customers periodically proactively estimate capacity of their installations it terms of a number of servers, CPU's per server, speed of CPU, IO, and network, as well as an impact of capacity on transaction response time.
- The paper presents MTA sizing methodology employed by Oracle's Hyperion performance engineering group for enterprise performance management application. The methodology uses both load testing and queuing network modeling tools. Load generation software emulates workload and collects data to feed queuing network models of MTA. After calibration models generate estimates of transaction response times and server utilizations for different what-if sizing scenarios (number of servers, number of CPUs per server, CPU speed, number of concurrent users etc).
- Presented approach provides more accurate sizing estimates and recommendations than empirical methods.

Multi-tiered enterprise applications (MTA) have common characteristics which is essential from a performance engineering perspective:

>Having significantly fewer users than Internet applications because their user communities are limited to corporation business departments. That number still can be pretty large reaching thousands of users, but it is never even close to millions.

>End user works with MTA not only through browser as in case of Internet application, but also through multiple Windows front-end programs like Excel, Power Point, as well as programs specifically designed for different business tasks user interfaces. Pretty often a front-end program does significant processing of information delivered from servers before making it available to a user.

>MTA are always evolving because they have to stay in sync with ever changing demands from business they support. Businesses fluctuate going through economic cycles with prevailing trend directed toward business growth. That generates a permanent need for MTA performance tuning and sizing due to changes in a number of users, volume of data, and complexity of business transactions.

>Processing much larger volume of data per a user request than Internet applications because they sift through terabytes of business records and often implement massive on-line analytical processing in order to deliver business data rendered as reports, tables, sophisticated forms and templates.

Presented how a sizing methodology differs from capacity planning. The term "capacity planning" means "resource planning"; sizing methodology provides estimates of resources as well as transaction times.

Transaction response time - main concern of user

Utilization of hardware - main concern of IT departments; it is hot parameter today with the onset of green datacenters

Wikipedia: "In the context of capacity planning, "capacity" is the maximum amount of work that an organization is capable of completing in a given period of time. "

Whatis.com: "In information technology, capacity planning is the science and art of estimating the space, computer hardware, software and connection infrastructure resources that will be needed over some future period of time. A typical capacity concern of many enterprises is whether resources will be in place to handle an increasing number of requests as the number of users or interactions increase. The aim of the capacity planner is to plan so well that new capacity is added just in time to meet the anticipated need but not so early that resources go unused for a long period. The successful capacity planner is one that makes the trade-offs between the present and the future that overall prove to be the most cost-efficient".

Presented methodology predicts not just resource utilizations, but also transaction response times which is must-have metric for business users.

Part 1 provides basic information of queuing network models

A user initiates transaction. Transaction is processed in a server for some period of time. User waits for processing to be completed BEFORE submitting a request for new transaction. Server is characterized by service time, user is characterized by think time. Think time is time between a moment a user receives a reply to transaction and the moment he/she submits a new transaction.

A few facts on models:

- Number of requests in system is equal to the number of system users.
- A request is an equivalent of a business transaction

- By solving model we getting metrics on transaction response times and server utilization.

Part 2 describes step by step methodology of application sizing which is based on load testing and queuing network modeling.

This picture presents a real production system which has application and database servers and has to support 400 concurrent users.

Methodology o Workload specif	f application sizing ication	
1. Specify busine	ss transactions:	
	Calculation 1	
	Open Form "Salaries"	
	Report "Capital Expenses"	
2. For each trans of concurrent	action, specify its rate per user pe users:	r nour and the number
Transaction name	Number of transactions per user	Number of users
Transaction name Calculation 1	Number of transactions per user per hour 2	Number of users
Transaction name Calculation 1 Open Form "Salaries"	Number of transactions per user per hour 2 4	Number of users 10 20
Transaction name Calculation 1 Open Form "Salaries" Report "Capital Expenses"	Number of transactions per user per hour 2 4 10	Number of users 10 20 50
Transaction name Calculation 1 Open Form "Salaries" Report "Capital Expenses"	Number of transactions per user per hour 2 4 10	Number of users 10 20 50
Transaction name Calculation 1 Open Form "Salaries" Report "CapItal Expenses"	Number of transactions per user per hour 2 4 10	Number of users 10 20 50

Workload is the most important input parameter for load testing and modeling. Testing and modeling results can be only as good as the workload specification.

For real production systems, a workload has to describe as closely as possible the kinds of transactions executed by system users, as well as the number of transaction executions by one user per hour. A total number of users per each transaction has to be defined also.

A transaction can be compared to a car traveling on highway with toll booths. A toll booth can be considered as a server. A car (transaction) moves from one toll booth to another (from one server to another), spending some time in each toll booth (server). Total time in all toll booths (servers) is the transaction processing time.

Yellow line - utilization of Planning server by transaction

White line - utilization of Database server by transaction

This is how to find time spent by transaction on each server:

- 1. Turn on monitor and set it up to record CPU utilization on all servers
- 2. Run one transaction for a user
- 3. Note CPU activity on each server and time of that activity.

The time a transaction spends on a server is equal to the time a server's CPU is working. This is why by monitoring CPU utilization, we can find out how much time a given transaction spent on a server.

3.1.	Workload	description exa	mple			
Tran name for si	nsaction and time ngle user	Number of transactions per user per	Number of concurrent users	Transaction	time breakdown o (seconds	btained by monitoring s)
	-	hour		Planning	Essbase	Think time
Calc 7.5	ulation 1 seconds	20	10	2.0	5.5	3600 sec / 20 =180sec
Ope "Sa 1.0	en Form alaries" <mark>seconds</mark>	40	20	0.45	0.55	3600 sec /40 = 90 sec

Transaction time is broken down by monitoring a single transaction.

Think time is the time between two transactions that have been requested by the same user. Think time is calculated by dividing one hour by the number of transactions executed by one user in an hour.

The number of transactions per user per hour is actually a business metric, not a technical parameter. It can be found by interviewing business users or by monitoring their activity.

This step is all about morphing a real system into a closed queuing model.

User is represented by a think time queue

Web and application servers are represented by Planning queue

Database is represented by database queue.

Transaction leaves think time queue, then receives service in the Planning server queue as well as in the database queue and returns back to the user. Total time spent by transaction in both Planning queue and Database queue is transaction response time.

If there is only one user in a system, than response time is equal to processing times in both queues. But when there are a number of concurrent users in a system, than waiting time becomes a substantial component of response time in addition to processing time.

Discipline

One of the following active resource queue disciplines:

FCFS First-come-first-served. Customers are serviced in the order they arrive. The customer is given its entire service requirement in one burst when its turn comes up.

FS Fair shared. Each customer receives service at a rate proportional to the relative shares assigned to this workload.

IS Infinite server. Any customer receives immediate service because enough servers exist to provide the requirements.

PPRI Preemptive priority. The customer in service is interrupted by any customer of higher priority. The interrupted customer's service is resumed after completion of the interrupting customer's service. Within a priority level, the discipline is FCFS.

PRI Non-preemptive priority. The customer in service cannot be interrupted. Within a priority level, the discipline is FCFS.

PS Processor shared. All customers are slowed down by the same ratio due to contention at the servers.

Model Description: Model_for_presentation.mdl odel Title: Systems Active Resources Workloads Pass User Notes AR/WL Matrix Steps P System Measured Throughput Adjustment		e workloads (one			ou baill 0	i the	same pusiness	transaction)	
Model Description: Model_for_presentation.mdl odel Title: Systems Active Resources Workloads Pass User Notes AR/WL Matrix Steps P System Measured Throughput Adjustment Description									
Systems Active Resources Workloads Pass User Notes AR/WL Matrix Steps P System Measured Throughput Adjustment P Name Workload Tumo Throughput Adjustment P	• Mod	lel Description:	Model_for_presen	tation.mdl					
Systems Active Resources Workloads Pas User Notes AR/WL Matrix Steps P System System Measured Throughput Adjustment P Name Workload Time Throughput Adjustment P	Mode	I Title:							
User Notes AR/WL Matrix Steps P System Markland Turno Throughput Adjustment Active Resources Environment		Syster	ms	Active Reso	ources		Workloads	Passive	
System Measured Throughput Adjustment	_	User Notes		AR/WL M	latrix		Steps	PRAV	
Infoughput Active Resource Environment		System Name Workload		Туре	Measur Through	ed put	Active Resource	Environment	
1 Hyperion Calculation 1 CLOSED 1. Think time server INTERACTIVE	1	Hyperion Planning	Calculation 1	CLOSED		1.	Think time server	INTERACTIVE	
2 Hyperion Open Form CLOSED 1. Think time server INTERACTIVE	2	Hyperion Planning	Open Form "Salaries"	CLOSED		1.	Think time server	INTERACTIVE	

A request in a closed workload does not enter or leave the system, there is a finite number of requests. A request traveling in a model represents one transaction initiated by one user. A number of requests in a queuing model is equal to a number of application users.

Open workloads have an infinite number of requests.

Trong	action name	Number of	Number of concu	reant	Transaction time breakdown				
and ti	me for single	transactions per	users	irein		(ร	econds)	Kuowii	
	user	user per hour			Pla	nning	Essbase	Think time	
Ca 7.5	culation 1 i seconds	20	10		9	2.0	5.5	180	
0 1.(pen Form Salaries") <mark>seconds</mark>	40	20		().45	0.55	90	
	System Name	Workload	Active Resource	Vis Cou	it Int	Service Required	Contribu Response	ite to Time'	
1	Hyperion Planning	Calculation 1	Planning server		1.	2000	yes		
2	Hyperion Planning	Calculation 1	Essbase server		1.	5500	yes		
3	Hyperion Planning	Calculation 1	Think time server		1.	180	no		
4	Hyperion Planning	Open Form "Salaries"	Planning server		1.	450	yes		
5	Hyperion Planning	Open Form "Salaries"	Essbase server		1.	550	yes		
6	Hyperion Planning	Open Form "Salaries"	Think time server		1.	90	no		

Resource/Workload matrix describes per each transaction which servers each transaction visited and how long time a transaction was processed on each one.

A column "Service required" defines time spent on a server.

-			orkload and so	lve model	an time breakdown (co	conde)
Transaction name and time for single USEr	Number of transactions one user per o hour	per one	er of concurrent users	Planning	Essbase	Think time
Calculation 1 7.5 seconds	2		10	2.0	5.5	1800
Open Form "Salaries" 1.0 seconds	4		20	0.45	0.55	900
	Principal Res	sults	AR S	tatistics		
	WL by AR Stat	istics	WL by Pl	R Statistics		
	System Name	Workload	I Throughput	Response	Population	
1 H P	lyperion C 1anning	alculation 1	0.005333	7.5	1.	
2 H	lyperion 0	pen Form	0.01099	1.	1.	

We calibrate the model for a single user. Calibration means a model calculation for a single user and comparison of results with sizing requirements. If there are discrepancies, than the model has to be modified.

	Nethodology Setting up us	of appl er popula	ication sizing ation					
9. Set (different numbe	er of users	5					
K	Model Description: Model	for_presentation	.mdl					
N	Model Title:							
	Systems		Active Resources		Wor	I	Pas	
	User Notes		AR/WL Matrix		Steps			P
	System Name	Workloa	Workload d Growth Type	Step: 1	Step: 2	Step: 3	Step: 4	Step: 5
	1 Hyperion Planning	Calculation 1	Population:	1	100.	200.	300.	400.
	2 Hyperion Planning	Open Form "Salaries"	Population:	1	. 200.	300.	400.	500.

Model can predict system characteristics for different number of users.

Transaction response time is flat or increases only a little when the number of users increases, up to the point where queuing starts happening. Then, response time jumps exponentially. A chart in this slide demonstrates the classical "hockey stick", with its angle at step 3 when there were 500 concurrent users.

Solved model delivers time spent by each transaction on each server (which is equal to time in CPU and time waiting for CPU).

Model is solved for 1, 300, 500, 700, and 900 users

Utilization of Planning server has a downtrend as the number of users grows. Explanation: more and more requests are queued in Essbase server which reached almost 100% of its capacity on Step 4. That means Planning server has a less intense flow of requests.

This part of presentation demonstrates sizing methodology "in action".

On the first step we collected the information necessary for modeling data by applying a load from concurrent users to a real production system with an enterprise application.

On the second step we built a queuing model of a system and solved the model using collected performance data as model input.

On the third step we evaluated results and analyzed different what-if scenarios for various system architectures

Exam	ple 1. Model of productio	on system	
	System has two servers hosting V	Vorkspace and HF	M components
Item	Value	Item	Value
OS Manufacturer System Name System Manufacturer System Nodel Sustem Type Processor Processor Processor BIOS Version/Date SMBIOS Version Windows Directory Boot Device Locale Hardware Abstraction Layer User Name Time Zone Total Physical Memory Available Physical Memory	Microsoft Corporation PE-W204 IBM eserver vSeries 336-[8837/x/3]- X86-based PC x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3600 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3600 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3600 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3600 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3600 Mhz x87 Family 15 Model 4 Stepping 1 GenuineIntel ~3600 Mhz x87 Family 15 Model 4 Stepping 1 GenuineIntel ~3600 Mhz x88 Family 15 Model 4 Stepping 1 GenuineIntel ~3600 Mhz x88 Family 15 Model 4 Stepping 1 GenuineIntel ~3600 Mhz z06 Family 15 Model 4 Stepping 1 GenuineIntel ~3600 Mhz (WNINDOWS C.VWINDOWS C.VWINDOWS Version ~ % 2.3790.3959 (sr-03_sp2_tm.070216-1710)* PEW204 Vanishistator Eastern Standard Time 2,047.31 MB 1,02 GB	OS Name Version Other OS Description OS Manufacturer System Manufacturer System Model System Type Processor Processo	Microsoft[R] Windows[R] Server 2003, Enterprise Edition 5: 32790 Service Pack 2 Build 3730 Not Available Microsoft Corporation FEW/205 IBM server x5eries 366-[8963-0:1]. X86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz x86 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel ~3669 Mhz w87 Family 15 Model 4 Stepping 1 GenuineIntel
Server I	PEW204 - Workspace	Server PE\ app	W205 – HFM Web and lication servers
© 2008 Oracle Corporation			

To build a model we have to know system architecture as well as specifications of servers. This slide indicates that system has two servers. It also shows the number of CPUs per each server and CPU speeds.

1										
2	Transaction times from	n LoadRu	nner						Model transac	ction
3	runs for one user (sec	onde)					-		times (second	te)
A	HEM 0 3 1 ecripte HEM0:	(7)							unes (second	13)
5	The west states the west	2)								
6	Transaction Name	Minimum	Average	Maximum	Std. Devi	0 Percent	Pass	Fail		Average
7	DP-00-LogonPage	1.179	1.179	1.179	0	1.179	1	0	LogonOpenApp	5.1
8	DP-01-LogonWS	2.811	2.811	2.811	0	2.811	1	0		1
9	DP-02-OpenApplication	1.134	1.134	1.134	0	1.134	1	0		
10	vuser init Transaction	5.125	5.125	5.125	0	5.125	1	0		
11	DP-11-ConsolidateParent	10.213	10.244	10.289	0.023	10.265	13	0	ConsolidateParent	t 10.2
12	DP-04-LoadFile	3.086	3.102	3.127	0.012	3.127	13	0	LoadFile	3.1
13	DP-08-ForceCalculate	6.735	6,793	6.976	0.06	6.851	13	0	ForceCalculate	6.8
14	DP-05-GotoProcessControl	0.37	0.413	0.638	0.078	0.541	13	0	Navigate	3.2
15	DP-06-SetPOV	0.519	0.583	0.743	0.071	0.735	13	0	01010101010101000000	0
16	DP-07-SelectEntity	0.776	0.817	1.164	0.101	0.807	13	0	We will model only	
17	DP-09-GotoProcessControl	0.265	0.275	0.282	0.004	0.278	13	0	framed transaction	ns
18	DP-10-SelectParent	0.78	0.816	0.979	0.05	0.834	13	0	and Logoff are one	enApp P
19	DP-12-GotoTasks	0.009	0.011	0.016	0.002	0.016	13	0	transactions	o camo
20	DP-03-GotoLDtask	0.265	0.278	0.327	0.015	0.283	13	0	0	b
21	DP07_Transaction	23.12	23.333	23.786	0.209	23.767	13	0		
22	DP-13-LogoffWS	0.241	0.241	0.241	0	0.241	1	0	Logoff	0.241
23	vuser_end_Transaction	0.241	0.241	0.241	0	0.241	1	0		

Load test application collected response times for 16 transactions. Logon and Logoff transactions are executed only once by each user and can be excluded from model workload.

Workload has three main transactions: ConsolidateParents, LoadFile, and ForceCalculate. All remaining transactions will be consolidated into the one called "Navigate", because each of the remaining transactions are pretty light in terms of resource demand. By consolidating transactions we minimize our modeling efforts without compromising the applicability of the model.

Chart demonstrates response time per each transaction for different number of users: 10, 30, 60, and 80.

There is a pretty interesting effect – transaction 'ForceCalculate" is faster than transaction "ConsolidateParents" for 10 and 30 users, but when a number of users is reaching 60 it becomes significantly slower. This is an indication that transaction "ForceCalculate" started experience some limitation at the software level – limited number of threads, or database locking, or shortage of memory.

Later on we will show how that effect can be reflected in a model.

Chart shows utilization of both servers for different numbers of users.

		Transact	ion respons	e times				
]	Number of	users	1	10	30	60		80
Calculate	Parent	Load test	10.2	9.8		9.8	10.5	13.1
(sec))	Model						
ForcCale	ulate	Load test	6.7	6.0		5.1	10.0	21.8
(sec)) [Model						
LoadFile	(sec)	Load test	3.3	3.2		3.2	3.2	3.3
		Model						
Navigate	(sec)	Load test	3.3	3.2		3.2	3.2	3.3
		Model						
	Nun	aber of users	Server ut	lizations	30	60	80	
н	FM server	E Load test		8.0	18.1	43.2	65	5.1
- V	Verbenace	Load test		2.0	51	10.0	13	1.5
5	erver (%)	Model		2.0		10.0	1.	
alibrated	l model as close	has to deliver to as possible to	transaction the value	on resp es mea	onse ti asured	mes an during l	d serv oad te	re utili est

After running Load test we collected data needed for building and solving model. We obtained response time for each transaction for different number of users, as well as utilizations of both servers.

Important to note; calibrated model has to deliver transaction response times and server utilizations as close as possible to the values measured by during load test.

A picture of a computer motherboard demonstrates that a server is much more that a collection of CPUs and memory. It includes different controllers which by their nature are specialized computers managing I/O operations, memory operations, video processing etc.

CPU utilization reported by monitoring tools only relates to the part of a server which is CPU, but does not reflect processing carried out by other controllers.

To factor in the impact of controllers on system performance we included an additional queuing module representing all controllers.

Breaking down transaction time based on server utilization might be correct or somewhat correct. We should not worry about it for now, we will change those number while calibrating model, but at that point of modeling process we have to have the values to begin with.

To find out transaction time breakdown we set up a run for a single user repeatedly executing. Time breakdown is proportional to servers utilizations.

Time transaction spent on a server 1 = 1/ average service rate 1 Time transaction spent on a server 2 = 1/ average service rate 2

> Average server 1 utilization = = average arrival rate / average service rate 1

> Average server 2 utilization = = average arrival rate / average service rate 2

Average server 1 utilization / Average server 2 utilization = =average service rate 2/ average service rate 1

Finally:

Time transaction spent on a server 1 / Time transaction spent on a server 2 = = Average server 1 utilization / Average server 2 utilization

Transaction name and time for single	Number of transactions	Number of concurrent	Transacti	on time b (seconds)	reakdown	Think time
user	per one user per one hour	users	Workspace pew204	HFM pew20 5	Controllers	
ConsolidateParent 10.2 seconds			0.73	5.54	3.9	
LoadFile 3.3 seconds			0.11	1.43	1.74	
ForceCalculate 6.7 seconds			0.25	3.48	2.99	
Navigate 3.3 seconds			0.11	1.43	1.74	

Now we started to consolidate all input data that describes the workload into the table. This is the transaction time breakdown

	,	Workload o	lescription -	- 3		
Thir	nk time and	I the nur	nber of co	oncurr	ent users	
Transaction name and time for single	Number of transactions	Number of	Transacti	on time b (seconds)	oreakdown)	Think time
user	per one per one hour	rent users	Workspace pew204	HFM pew205	Controllers	
ConsolidateParent 10.2 seconds	20	10 - 80	0.73	5.54	3.9	3600 / 20 =180
LoadFile 3.3 seconds	20	10 - 80	0.11	1.43	1.74	3600 / 20 =180
ForceCalculate 6.7 seconds	20	10 - 80	0.25	3.48	2.99	3600 / 20 =180
Navigate 3.3 seconds	20	10 - 80	0.11	1.43	1.74	3600 / 20 =180

After getting filled all the numbers into table we have pretty good realistic description of production workload generated by a SINGLE user.

We can start populating model with data now.

S	ystems	Activ	ve Resources	ļ		Workle	ad	6]	Passive Reso	urces
Us	er Notes	AF	AR/WL Matrix			Steps			PR/WL Mat	rix	
Syste Nan	e Resour	De	Equipment Name	Equi	pment /pe	Disciplin	ie	Speed Factor	Number of Servers	Туре	Pat
1 HFM FI4	T HFM server	Intel > 3.5GH	(eon 7150N Hz/1MB/16MB	CPU		PPRI		1756.33	8.	MULT	
2 HFM FIA	T Workspace se	rver Intel≻ 3.73G	keon 5080 iHz/2MB	CPU		PPRI		1749.85	4.	MULT	
3 HFM FIA	T Think time	THIN	THINK Queue			IS		1.	1.		
4 HFM FIA	T Controllers			Unkno Type	wn	IS		1000.	1,		

First we define servers.

Time in HFM server per one visit: $1 \sec / 1756.33 = 0.000569 \sec$ Time in Workspace server per one visit: $1 \sec / 1749.85 = 0.000571 \sec$ Time in Controllers server per one visit: $1 \sec / 1000 = 0.001 \sec$

				r	۷lo	del descr	iptio	n - 2			
_	Syster	ns		Active Res	ouro	ces	_	v	Norkloads	Passive	e Resources
	User No	otes		AR/WL N	/latri	ix			Steps	PRA	VL Matrix
	System Name	Workload		Туре		Measure Through	ed out	Thro ,A	oughput Adjustment Active Resource	Environment	
1 H	IFM FIAT	ConsolidatePare	ni CLO	SED			1.	Think ti	me	INTERACTIVE	
2 H	IFM FIAT	LoadFile	CLO	SED			1. Think time		INTERACTIVE		
3 HFM FIAT ForceCalculate		CLO	SED			1.	Think ti	me	INTERACTIVE		
4 H	IFM FIAT	Navigate	CLO	SED		1.	Think ti	me	INTERACTIVE		
	Syster	ms		Active Res	sour	ces	[1	Workloads	Passiv	e Resource
	User No	otes		AR/WL N	Matr	ix			Steps	PR/	WL Matrix
Τ	System Name	Passive Resourc	e e	Eq	иірі Тур	ment De	Сара	acity			
1 H	IFM FIAT	Database lockin	g	Software	Que	eue		120.	1		
2 H	IFM FIAT	Database lockin	g_2	Software	Que	eue		120.			

Because we observed an impact of software limitations on transaction response time, we analyzed the system more closely and found that database locking is affecting response time. This is why we introduced into model passive resources called "Database_locking" and 'Database_locking_2".

Those resources are affecting transactions "ForceCalculate" and " CalculateParents". We indicated total capacity of each resource as 120 and later on we will indicate the size of the resource's capacity each transaction will take during its execution.

The process of defining passive resource capacity and the chunk a transaction takes while execution is iterative – we have to define and redefine those values during model calibration process.

			Model	descriptio	on - 3			
	Syste	ms	Active Resources	T	Wor	kloads	Passive Reso	urces
	User N	otes	AR/WL Matrix		S	teps	PR/WL Mat	rix
	System Name	Workload	Active Resource	Visit Count	Service Required	Contribute to Response Time'	Affected Passive Resource	Fai Shar
1	HFM FIAT	ConsolidateParent	HFM server	1.	9737.	yes	Database locking	
2	HFM FIAT	ConsolidateParent	Workspace server	1.	1277.	yes	Database locking	
3	HFM FIAT	ConsolidateParent	Think time	1.	180.	no		
- 4	HFM FIAT	ConsolidateParent	Controllers	1.	3890.	yes	Database locking	
5	HFM FIAT	LoadFile	HFM server	1.	2512.	yes		
6	HFM FIAT	LoadFile	Workspace server	1.	187.	yes		
7	HFM FIAT	LoadFile	Think time	1.	180.	no		
8	HFM FIAT	LoadFile	Controllers	1.	1744.	yes		
9	HFM FIAT	ForceCalculate	HFM server	1.	6118.	yes	Database locking_2	
10	HFM FIAT	ForceCalculate	Workspace server	1.	433.	yes	Database locking_2	
11	HFM FIAT	ForceCalculate	Think time	1.	180.	no		
12	HFM FIAT	ForceCalculate	Controllers	1.	2994.	yes	Database locking_2	
13	HFM FIAT	Navigate	HFM server	1.	2512.	yes		
14	HFM FIAT	Navigate	Workspace server	1.	187.	yes		
15	HFM FIAT	Navigate	Think time	1.	180.	no		
16	HFM FIAT	Navigate	Controllers	1.	1744.	yes		

We described that transaction "ForceCalculate" needs Database_locking_2 passive resource; transaction "ConsolidateParents" needs Database_locking resource.

	Quete				ative Deserves		-	18/00	landa			
	User N	otes			AR/WL Matrix		}	vvon Si	tens		Fa	RAM Matrix
	Syster Name	m e	Worklo	ad	Workload Growth Type	0.11	Step: 1	Step: 2	Step: 3	Step: 4	Step: 5	in the matter
1 HF	MFIAT	Cor	nsolidateF	^{>} arent	Population:		1.	10.	30.	60.	80.	
2 HF	MFIAT	Los	adFile		Population:		1.	10.	30.	60.	80.	
3 HF	M FIAT	For	rceCalcula	ite	Population:		1.	10.	30.	60.	80.	
4 HF	M FIAT	Nat	vigate		Population:		1.	10.	30.	60.	80.	
	System				Passive	5	ize			·		
	System				Passive	s	lize					
	Name	Work	kload		Resource	Red	quired					
1 HF	MFIAT	Consolidat	teParent	Datab	ase locking		22.					
2 HF	MFIAT	Consolidat	teParent	Datab	ase locking_2		0.					
3 HF	M FIAT	LoadFile		Datab	ase locking		0.					
4 HF	MFIAT	LoadFile		Datab	ase locking_2		0.					
5 HF	MFIAT	ForceCalc	ulate	Datab	ase locking		0.					
6 HF	MEIAT	ForceCalc	culate	Datab	ase locking_2		41.					
7 HF		Navigate		Datab	ase locking	<u> </u>	U. 0					
10 1.10		INavigate		Datab	ase locking_2	I	U.					

Here we indicated what is the size of passive resource is consumed by each transaction.

We solved the model and got transaction response times. Looks like we were able to model database locking impact.

Model also delivered utilizations of both servers for different number of concurrent users.

	Load test and	model result	s comparis	son		
	Transac	tion response	times			
Number o	of users	1	10	30	60	80
CalculateParent	Load test	10.2	9.8	9.8	10.5	13.
(sec)	Model	10.2	10.2	10.2	11.0	13.
ForcCalculate	Load test	6.7	6.0	6.1	10.0	21.
(sec)	Model	6.7	6.7	7.1	10.4	20.
LoadFile (sec)	Load test	3.3	3.2	3.2	3.2	3.
	Model	3.3	3.3	3.3	3.3	3.
Navigate (sec)	Load test	3.3	3.2	3.2	3.2	3.
	Model	3.3	3.3	3.3	3.3	3.
	S	erver utilizati	ons			
Numb	er of users	10	30	60	80	
HFM server	Load test	8.0	18.1	43.2	65.1	
(%)	Model	7.9	23.8	47.2	61.6	
Workspace	Load test	2.0	5.1	10.0	13.5	
server (%)	Model	1.6	4.7	9.4	12.3	

Looking into tables we can say that our model is in pretty good accord with data collected during load test. We can say that we have calibrated our model and we can now use a model to analyze what-if scenarios.

This slide highlights some milestones in a process of model building and calibration.

This slide highlights some milestones in a process of model building and calibration.

This slide highlights some milestones in a process of model building and calibration.

Part 3 describes how to evaluate different architectures and workloads using model.

This part demonstrates the value of modeling approach for application sizing as it allows quick evaluation of multiple options of system set up.

		Fixing locking	in a model is very s	simple – j	ust remo	ve Affected Pa	ssive Resources	
Fram	ie Name: Cop	y 1 of Baseline					Frame 2 of 2	(1)
	Syste	ms	Active Resources		Wor	rkloads	Passive Peso	urces
_	User N	otes	AR/WL Matrix		S	teps	PR/VL Mat	trix
	System Name	Workload	Active Resource	Visit Count	Service Required	Contribute to Response Time'	Affected Passive Resource	Fa Sha
1	HFM FIAT	ConsolidateParent	HFM server	1.	9737.	ves		
2	HFM FIAT	ConsolidateParent	Workspace server	1.	1277.	yes		
3	HFM FIAT	ConsolidateParent	Think time	1.	180.	no		
4	HFM FIAT	ConsolidateParent	Controllers	1.	3890.	yes		
5	HFM FIAT	LoadFile	HFM server	1.	2512.	yes		
6	HFM FIAT	LoadFile	Workspace server	1.	187.	yes		
7	HFM FIAT	LoadFile	Think time	1.	180.	no		
8	HFM FIAT	LoadFile	Controllers	1.	1744.	yes		
9	HFM FIAT	ForceCalculate	HFM server	1.	6118.	yes		
10	HFM FIAT	ForceCalculate	Workspace server	1.	433.	yes		
11	HFM FIAT	ForceCalculate	Think time	1.	180.	no		
12	HFM FIAT	ForceCalculate	Controllers	1.	2994	yes		
13	HFM FIAT	Navigate	HFM server	1.	2512	yes		
14	HFM FIAT	Navigate	Workspace server	1.	187.	yes		
15	HFM FIAT	Navigate	Think time	1.	180.	no		
16	HFM FIAT	Navigate	Controllers	1.	1744.	yes		

This is self explanatory – fixing locking in a model is simple – just remove Affected Passive Resources. After that we can solve model and see how good transactions look if they are not hitting a wall called "Database locking".

To fix locking in real system is much more challenging, but model actually encourages to do that because it shows great positive impact of that action.

This is how well transactions perform after locking is eliminated. Great incentive for application designers to take care of software limitations!

And the server's utilization is in a normal range. Now we are well positioned to check if our system can support more users.

Systems User Note System Name			hree steps with more concurrent users				Fram, 3 of 3 K <				
User Note User Note System Name HFM FIAT	retarne i	Active Decources	r	Work	loade	<u> </u>	i ranno s	ceive Picco			
System Name	ar Notes	ARAM Matrix	<u>`</u>	St	ane			PAM Mat			
1 HFM FIAT	rstem ame Workload	Workload Growth Type S	Step: 2	Step: 3	Step: 4	Step: 5	Step: 6	Step: 7	Step: 8		
O UD LEVT	ConsolidateParent	Population:	10.	30.	60.	80.	100.	200.	400.		
2 HEM FIAT	T LoadFile	Population:	10.	30.	60.	80.	100.	200.	400.		
3 HFM FIAT	ForceCalculate	Population:	10.	10. 3	30.	30. 60.	60. 80.	80. 100.	200.	400.	
4 HFM FIAT	T Navigate	Population:	10.	30.	60.	80.	100.	200.	400.		

Let's try to increase a number of user to 100, 200, and 400.

We still have acceptable transaction time for 100 users, but the system cannot support more users than that.

The reason is – one of our servers reaches 100% of its capacity for 200 users. What can we do to still accommodate 200 users?

Let's try to add one more HFM server.

Mode	el Title: HFM F	TAT model					
Fram	e Name: Copy	/ 1 of Copy 1 of Cop	y 1 of Baselipe			Frame 4 of 4	K < >
	System	ns	Active Resource	is 🚺	Workloads	Passive	Resources
	User No	tes	AR/WL Matrix		Steps	PR/W	L Matrix
	System Name	Workload	Туре	Measured Throughput	Throughput Adjustment Active Resource	Environment	
1	HFM FIAT	ConsolidateParent	CLOSED	1.	Think time		1
2	HFM FIAT	LoadFile	CLOSED	1.	Think time	INTERACTIVE	
3	HFM FIAT	ForceCalculate	CLOSED	1.	Think time	INTERACTIVE	
4	HFM FIAT	Navigate	CLOSED	1.	Think time	INTERACTIVE	
5	HFM FIAT	ConsolidateParent_2	2 CLOSED	1.	Think time	INTERACTIVE	
6	HFM FIAT	LoadFile_2	CLOSED	1.	Think time	INTERACTIVE	
7	HFMFIAT	ForceCalculate_2	CLOSED	1.	Think time	INTERACTIVE	
8	HFM FMT	Navigate 2	CLOSED	1	Think time	INTERACTIVE	

We have to distribute evenly workload between two HFM servers.

Mode	I Title: HFM F	is two time	into es sm	account that haller now, bu	a ut a	numbe a total	er of use number	of user	ng in ea s is still i	ch HFM the sam	server e		
Frame	e Name: Copy	1 of Copy 1 of	Copy	1 of Baseline	_			$\overline{}$			Frame 4	of 4 <	$\langle \rangle$
	System	s	1	Active Resou	rces	1	1	Work	loeds	<u> </u>	Pa	ssive Resou	urces
	User Notes			AR/WL Mat	rix			St	eps	- i	F	R/WL Mat	rix
	System Name	Worklos	d	Workload Growth Type	5	Step: 1	Step: 2	Step: 3	Step: 4	Step: 5	Step: 6	Step: 7	Step: 8
1		Concert data D		Population:	f	1.	5.	15.	30.	40.	50.	100.	200
	HEM FIAT	ConsolidateP	arent	r opalation.									
2	HFM FIAT	LoadFile	arent	Population:		1.	5.	15.	30.	40.	50.	100.	200
2	HFM FIAT	LoadFile ForceCalculat	e	Population: Population:	F	1.	5. 5.	15. 15.	30. 30.	40. 40.	50. 50.	100. 100.	200
2	HFM FIAT HFM FIAT HFM FIAT	LoadFile ForceCalculat Navigate	e	Population: Population: Population:		1. 1. 1.	5. 5. 5.	15. 15. 15.	30. 30. 30.	40. 40. 40.	50. 50. 50.	100. 100. 100.	200 200 200
2 3 4 5	HFM FIAT HFM FIAT HFM FIAT HFM FIAT	ConsolidateP LoadFile ForceCalculat Navigate ConsolidateP	e arent_2	Population: Population: Population: Population:		1. 1. 1. 1.	5. 5. 5.	15. 15. 15. 15.	30. 30. 30. 30.	40. 40. 40. 40.	50. 50. 50. 50.	100. 100. 100. 100.	200 200 200 200
2 3 4 5 6	HFM FIAT HFM FIAT HFM FIAT HFM FIAT HFM FIAT	ConsolidateP LoadFile ForceCalculat Navigate ConsolidateP LoadFile_2	e arent_2	Population: Population: Population: Population: Population:		1. 1. 1. 1.	5. 5. 5. 5.	15. 15. 15. 15. 15.	30. 30. 30. 30. 30.	40. 40. 40. 40. 40.	50. 50. 50. 50. 50.	100. 100. 100. 100. 100.	200 200 200 200 200
2 3 4 5 6 7	HFM FIAT HFM FIAT HFM FIAT HFM FIAT HFM FIAT HFM FIAT	ConsolidateP LoadFile ForceCalculat Navigate ConsolidateP LoadFile_2 ForceCalculat	e arent_2 e_2	Population: Population: Population: Population: Population: Population:		1. 1. 1. 1. 1. 1.	5. 5. 5. 5. 5. 5.	15. 15. 15. 15. 15. 15.	30. 30. 30. 30. 30. 30.	40. 40. 40. 40. 40. 40.	50. 50. 50. 50. 50. 50.	100. 100. 100. 100. 100. 100.	200 200 200 200 200 200 200

We replicated all transactions – one group of transactions is served in one server, and second group is served in second server. We have to make sure that a number of users hitting each server is two times lover that a total number of users.

	m Workload	Active	Visit	Service	Contribute to		Affected Passive
1 HEMEIA	ConsolidateParent	HEM contor	Count	Prequired 9727	Presponse Tin	10	Presource
2 HEMEIA	ConsolidateParent	HEM contor 2		9737	905	-	
3 HEM FIA	ConsolidateParent	Workspace server	1 1	1277	NO	-	
4 HEM FIA	ConsolidateParent	Think time	1	180	00	-	
5 HEM FIA	ConsolidateParent	Controllers	1	3890	ves		
6 HEM FIA	T LoadFile	HFM server	1	2512	Ves	-	
7 HEM FIA	T LoadFile	HFM server 2	1	2512	no		
8 HEM FIA	T LoadFile	Workspace server	1	187	ves		
9 HFM FIA	T LoadFile	Think time	1.	180.	no		
10 HEM FIA	T LoadFile	Controllers	1.	1744.	yes		
11 HFM FIA	T ForceCalculate	HFM server	1.	6118.	yes		
12 HFM FIA	T ForceCalculate	HFM server 2	1.	6118.	no		
13 HFM FIA	T ForceCalculate	Workspace server	1.	433.	yes		
14 HFM FIA	T ForceCalculate	Think time	1	180.	no		
15 HFM FIA	T ForceCalculate	Controllers	1.	2994.	yes		
16 HFM FIA	T Navigate	HFM server	1.	2512	yes		
17 HEM FIA	T Navigate	HFM server 2	1.	2512	no	_	
18 HFM FIA	T Navigate	Workspace server	1	187.	yes	_	
19 HEMELA	r Nevigete	Think time		180.	no	_	
20 HFM FIA	Navigate	Controllers	1.	1744.	Yes	_	
21 HFM FIA	ConsolidateParent_2	HFM server	1.	9737.	no		
22 HFM FIA	ConsolidateParent_2	HFM server 2	1.	9737.	yes		
23 HFM FIA	ConsolidateParent_2	Workspace server	1.	1277.	yes		
24 HFM FIA	F ConsolidateParent_2	Think time	1.	180.	no	_	
25 HFM FIA	ConsolidateParent_2	Controllers	1.	3890.	yes	_	
26 HFM FIA	LoadFile_2	HFM server	1.	2512	no	_	
27 HEMELA	LoadFile_2	HFM server 2	1	2512	yes		
28 HFM FIA	T LoadFile_2	Workspace server	1.	187.	yes	_	
29 HFM FIA	T LoadFile_2	Think time	1 1	180.	no	_	
30 HEM FIA	LoadFile_2	Controllers	1.	1744.	yes	_	
31 HFM FIA	ForceCalculate_2	HFM server	1	6118.	no	_	
32 HEM FIA	PorceCalculate_2	FIFM server 2	1	6118.	yes		
33 HFM FIA	ForceCalculate_2	Workspace server	1	433.	ves		
34 HEM FIA	ForceCalculate_2	Think time	1	180.	no		
35 FIFM FIA	ForceUsiculate_2	Lontrollers	1	2994	yes	_	
30 FIFM FIA		HIEN SERVER		2512	no	_	
32 HEMELA	T Nevigete_2	HEM Server 2		2612	yes		
30 HEMELA	T Nevigate_2	Think time	1	187.	yes	_	
JUDINI MICA	i itavigate_2	Timik time	1	100.	10	_	

This is the task of describing how transactions travels across model.

And now we can solve the model and see that two HFM servers still do not deliver transaction times we are looking for.

The reason – still bottleneck on HFM servers.

Mode	el Title: HFM	FIAT model							
Fram	e Name: Cop	y 1 of Copy 1 of Copy	1 of Copy 1 of Baseline		11	~	Frame	5 of 5	$\langle \rangle$
	Syste	ms	Active Resources		Workloa	Ne		Passive Res	ources
	User N	otes	AR/WL Matrix		Steps	1		PR/WL Ma	atrix
	System Name	Active Resource	Equipment Name	Equipment Type	Discipline	Speed Factor	Number of Servers	Туре	Pat
1	HFM FIAT	HFM server	Intel Xeon 7150N 3.5GHz/1MB/16MB /Leonid/	CPU	PPRI	1580.7	16.	MULT	
2	HFM FIAT	HFM server 2	Intel Xeon 7150N 3.5GHz/1MB/16MB /Leonid/	CPU	PPRI	1580.7	16.	MULT	
3	HFM FIAT	Workspace server	Intel Xeon 5080 3.73GHz/2MB	CPU	PPRI	1749.85	4.	MULT	
4	HFM FIAT	Thinktime	THINK Queue		IS	1.	1.		
5	HFM FIAT	Controllers		Unknown	IS	1000.	1.		

OK, we invested in servers.

And our investment pays back – system delivers acceptable response time now for 200 users!

Servers have some extra capacity for 200 users, but are maxed out for 400 users.

Lessons learned

- Model is an extension but not a substitute to your experience and gut feelings – use both to make sure model projections are right. If there is a conflict between model prediction and your senses revisit both until they are in concert.
- Model predictions are only as good as input data. Go extra mile to make sure you feed model with data you can trust. Using load testing increases input data quality.
- Calibrate model! As more calibration points, as higher your confidence in model accuracy.
- Queuing network models are capable to factor in not only hardware, but also application constrains like number of threads, database connections, data locks etc.
- Solving model is a breeze do not limit a number of what-if scenarios you evaluate. You might come up with architecture which saves a lot of money.

© 2008 Oracle Corporation

