
CUSTOM LOAD GENERATION

Alexander Podelko, Arno Sokk and Leonid Grinshpan

Hyperion Solutions
{Alexander_Podelko, Arno_Sokk, Leonid_Grinshpan}@hyperion.com

Commercial load generation tools allow recording tier-to-tier communication and creating
workloads via playback of the recorded script. Unfortunately, they do not work for all
technologies. The alternative of creating a special test harness becomes more time-
consuming when faced with complicated scenarios and a need to analyze results. This
paper discusses our experience using an intermediate approach: developing a custom
virtual client and running it using commercial tools (with powerful management and
reporting features) to arrive at a technology-independent solution.

Load testing

Testing applications for multi-user performance and
reliability is necessary to avoid failure in today’s
technology. It is rather special kind of testing, requiring
special tools, knowledge, and in-depth analysis.

The most challenging task here, according to our
experience, is to create a reproducible multi-user
workload matching real-life user scenarios in a limited
time.

This paper will discuss several approaches to the
problem, summarizing the load testing experiences of
the performance group at Hyperion Solutions Corp.

Hyperion Solutions is a vendor of business analysis
software. The company's multidimensional database
Essbase, packaged business analysis applications
and tools are used by 6,000 organizations worldwide,
including more than 60 of the Fortune 100.

The performance group is shared between all
development teams and responsible for performance,
scalability, and reliability testing. It supplements the
functional testing done by the Quality Engineering
group for each product.

In total, there are about two dozens of different
products to test (each usually has different versions
and builds and works on different platforms). Some of
them work in combination with others as well as third-
party products. Often a product has several kinds of
clients using different protocols for communication (for
example, a Web client using HTTP protocol or a
Win32 client using Java RMI protocol).

So there are infinite combinations of products and
workloads using different technologies and we need to
create meaningful and realistic workloads in a timely
manner (usually in the development cycle timeframe)
in order to do comprehensive performance and
reliability testing.

Originally we used the “record and playback” approach
(load testing tools) or created a special program to
generate workload (custom test harness) from scratch,
but often found that neither of them is the best way.

“Record and playback” approach

The main idea of this approach is to record
communication between two tiers of software and then
playback an automatically created script (usually, of
course, after proper parameterization).

There are several universal load testing tools on the
market today that support such an approach (and are
much more specialized, especially for testing web
performance). The following features could be
considered as standards for such tools:

�� Ability to record scripts automatically for
different protocols

�� Simulating numerous users (limited mainly by
hardware configurations)

�� Centralized test management and result
analysis

�� Coordinated test execution from several
computers

�� Support for different environments

�� Ability to simulate GUI users as well as virtual
users

We successfully use two load testing tools in our
group: Mercury LoadRunner and Rational Test
(PerformanceStudio, preVue-C/S). The evaluation and
choice were made in 1997. These tools are always
changing, so there is not much sense to discuss why
they were chosen at that time.

The choosing of the right load-testing tool is a
separate large and interesting topic and is out of the
range of this paper. All further examples are for
Mercury LoadRunner and Rational Test because these
are the tools with which we have experience.

I believe that everything discussed here could also be
applied to other tools (for example, Segue
SilkPerformer or Compuware QALoad). But, of course,
the implementation details would be different.

We use the “record and playback” approach in most
projects but, unfortunately, it doesn’t work for all
technologies.

For example, we were not able to use the “record and
playback” approach for following protocols:

�� SMB (Server Message Block) protocol, later
succeeded by Common Internet File System
(CIFS) protocol. It is used when two Microsoft
network systems communicate over a
network. Its commands are embedded within
the transport protocols like TCP/IP. We
worked with Rational development and
support for a long time but without success.

�� Microsoft DCOM (Distributed Component
Object Model). Used for communication
between two remote COM components. At the
moment of the evaluation (1999), only Mercury
claimed DCOM support but it didn’t work in our
environment. After a couple of months of work
with support without any success, we
implemented another approach, described
below. Since this approach worked fine we
didn’t return to the evaluation of DCOM
“record and playback” support, although it was
significantly improved in all load testing tools.

�� Java RMI (Remote Method Invocation). Used
for communication between two remote Java
programs. At the moment of the evaluation
(1999), nobody supported our environment
(Microsoft JVM). Now, after migration to Sun
JVM environment, we tried Mercury
LoadRunner 7.0 and found that it works fine
recording and replaying Java script. So now
we are re-evaluating available approaches to
RMI communications.

Custom test harness

Another straightforward way to create a multi-user
workload is a custom test harness (special program to
generate workload). It requires access to the API or
source code and some programming work.

In some simple cases it could be the best solution
(from a cost perspective, especially if there is no
purchased load testing tool). A simple harness could
spawn some threads and each thread will simulate
real user.

This approach was used in several projects for
component-level testing and was very useful
sometimes. But as soon as a harness is developed,
you need to add such features as, for example:

�� Complex user scenarios

�� Centralized test management and result
analysis

�� Coordinated test execution from several
computers

�� Ability to run GUI users as well as virtual ones

Efforts to update and maintain the harness increase
drastically. If you have numerous products (as
Hyperion does) you need really to create something
like a commercial load testing tool to assure all
necessary performance and reliability testing. It
probably isn’t the best choice for a small group.

Custom load generation

Since we experienced numerous problems applying
the two above-mentioned approaches to Hyperion’s
new products utilizing the latest technologies, we
came to the idea of a mixed approach that in this
paper is named “custom load generation”.

The main idea of this approach is the development of
lightweight custom software clients (client stubs) to
create the correct workload but use powerful
commercial tools to manage them and analyze the
results.

The implementation of this approach depends on the
particular load testing tool (this will be considered in
details later). For Rational Test and Mercury
LoadRunner, the more mature way is to create an
external C dll (or shared library for UNIX) and then call
functions defined in the dll from the tool’s native script
language (VU script for Rational Test, Vuser script for
Mercury LoadRunner; both are C-like script
languages).

Another way to implement this approach appeared in
the latest versions of load testing tools: to create a
script in a programming language (Visual Basic, C and
C++ for Mercury LoadRunner; Java, Visual Basic and
shell script for Rational Test) with the help of templates
and special tool-supplied functions.

These are the advantages of this custom load
generation approach:

�� Eliminates dependency of the third-party tool’s
ability to support specific protocols

�� Leverages all the features of commercial tools
and allows using them as a test harness

�� No need to implement multi-user support, data
collection and analysis, reporting, scheduling,
etc. This is inherent in the third-party tool.

�� Ensures that performance testing of current or
future applications can be done for any
protocol used to communicate among different
tiers

In some instances, it is the only way to quickly create a
performance testing environment (as for SMB, DCOM
and RMI, in our case) without developing a full-scale
custom harness.

But this approach has one more advantage: it allows
managing the workload in a more user-friendly way.

For example, if you record socket-level traffic,
recording and parameterization could take a lot of
time. And if you need to change the workload (for
example, use new queries), it is almost impossible to
change the parameterized script to reflect the new
workload. You probably need to re-record and re-
parameterize the script.

 When you implement custom load generation, the real
query, for example, could be read from an input file
and changing the query becomes very easy: you just
change the input file without any changes in the script.

The same is true if different builds of the software are
tested. Small changes could impact a low-level
protocol script but rarely change the API. Just install
the new build and run the test. There is no new
recording and parameterization needed.

But, of course, there are some considerations to keep
in mind for the custom load generation approach:

�� Requires access to API or source code

�� Require additional programming work

�� Requires commercial tool license for
necessary number of virtual users

�� Minimal transaction that could be measured is
an external function

�� Usually requires more resources on client
machines (since there is some custom
software)

�� Results should be cautiously interpreted
(insure that there is no contention between
client stubs)

Implementations for Rational Test
(PerformanceStudio)

The mature way to create a custom software client in
Rational Test is to implement it as an external dll. It
should be a set of C functions compiled as a dll (the
functions could be written in C++ and declared as
extern “C”).

This external dll should then be placed in a specific
directory and references to it are added to the script
properties.

There are some limitations. Only a limited set of types
can be function arguments:

C types VU types

Int Int
char * string /*read only */

char * string:maxsize
/*writable */

int * Int[], int[][],
int[][][]

char ** string[], string[][],
string [][][]

For example, let’s create the external dll for C function
void DoSomething (int n):

extern "C"{__declspec(dllexport) void
DoSomething(int n);}
#include "windows.h"

void DoSomething(int n)
{

… //some processing
}

VU script (C-like Virtual User language script using by
Rational Test) to call this function would be:

#include <VU.h>
external_C proc DoSomething(n)
int n;
{}
int p=3000; //a parameter

{
start_time ["T1"];
DoSomething(p);
stop_time ["T1"];

}

Since we use Rational Test as a framework to run this
VU script we get a comprehensive set of available
reports, abilities to simulate numerous users from
several machines and create complex scenarios as
well as other useful features of this load testing
automatically.

Usually functions (like DoSomething in the example
above) included in the dll are a wrapper around
specific C or C++ API functions. In simpler cases the C
API could be directly called from the VU script, without
the creation of wrapping functions.

Unfortunately if the software is written in another
language it isn’t too simple to use this approach. For
example, to run a custom client written in Java, the
java virtual machine (JVM) was started each time with
parameters to run the particular report by the Win32
CreateProcess function.

This probably wasn’t the most elegant approach but it
worked and allowed all necessary performance testing
to be completed.

Rational 2001 TestManager can work not only with
SQABasic (for GUI testing) and VU language scripts
but also with Java, Visual Basic and shell scripts (test
script services). It could significantly simplify using
custom clients written in these languages.

For example, instead of the awkward starting of JVM
by CreateProcess for each report for Java custom
client as in the above example (or some other non-
trivial transformation), it is possible to create a Java
script that will do everything, something like (without
exception handling):

import java.io.*;
import com.rational.test.tss.*;

public class hr extends
com.rational.test.tss.TestScript
{
public void testMain(String args[])
{

int n=30000;
myClass mc;

new hr();
mc = new myClass();

TSSMeasure.timerStart("T1");
mc.doSomething(n);
TSSMeasure.timerStop("T1");

}
}

This Java script is now just a standard script for
Rational Test and utilizes all features of the load
testing tool. Results could be seen through a set of
reports available in Rational Test.

Implementations for Mercury LoadRunner

Using LoadRunner, a custom software module could
be implemented as an external dll. LoadRunner could
use the lr_load_dll function to load the external dll
(shared library) in Vuser script or it could be defined
globally in the vugen.dat file. Then functions defined in
the dll could be used without declaration in the script.

For the external dll described above with void
DoSomething(int n) C function, a simple Vuser script
would look like:

#include "as_web.h"

Action1()
{

int p=3000; //a parameter

lr_load_dll("c:\\DoSomething.dll");
lr_start_transaction("T1");
DoSomething(p);
lr_end_transaction("T1", LR_AUTO);
return 0;

}

It is just a standard Vuser script that is running inside
the LoadRunner framework. It could be a part of a
complex scenario and LoadRunner, which produces a
comprehensive set of various reports, would analyze
its results.

Another way could be to program a script in Visual
Basic, C or C++ using special templates and
LoadRunner’s functions. However, this was not
attempted.

Summary

This paper described our experience of multi-user
workload simulation using a mixed method (custom
load generation): implementing low-weight custom
client software and running it with a commercial load
testing tool which is used as a harness to collect,
analyze and report results, as well as manage test
execution.

This approach eliminates technology limitations of the
“record and playback” approach (it didn’t work with
SMB, DCOM and RMI for us) and in some cases
facilitates the creation of a more flexible test harness.

Of course, it isn’t a silver bullet. But sometimes (often
enough in our case) it is a very good way to simplify
the creation of a multi-user workload.

It also isn’t something especially new. All these
features have been available in commercial load
testing tools for a long time. But usually they are

described at the very end of a user guide, somewhere
in a section for advanced users.

The goal of this paper was to show the importance of
these extendibility features of load test tools and the
real benefits that could be gotten from them.

* All trademarks and brands are the property of their respective
owners.

